Thay a và b (a khác b) biết: aa.ab=abb+ab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
aa.ab = abb + ab
a^3 . b = ab^2 + ab
a^3 . b = b ( ab + a )
=> a^3 = ab + a
=> a^2 . a = a ( b + 1 )
=> a^2 = b + 1
Thay a = 2 <=> b = 3
..... và còn rất rất nhiều cặp {a; b} nữa
Bài 1:
Cách 1; Chia cả 2 vế của đẳng thức \(ab\)được
\(aa=\frac{abb}{ab}+1\)
Vì \(abb=10ab+b\)nên \(\frac{abb}{ab}=10+\frac{b}{ab}\)
Do đó : \(aa=10+\frac{b}{ab}+1=11+\frac{b}{ab}\)
Số \(aa\)có thể bằng \(11,22,33...\)mặt khác \(b< ab\)nên \(\frac{a}{ab}< 1\), do đó \(11+\frac{b}{ab}\)là số tự nhiên có 2 chữ số chỉ có thể bằng \(11\)khi \(\frac{b}{ab}=0\),suy ra \(b=0\)và \(a=1\)
Với \(a=1\),\(b=0\)ta có đẳng thức:
\(11.10=100+10\)
CÁCH 2;
Vì \(aa.ab\)chia cho \(ab\)được thương là số tự nhiên có 2 chữ số giống nhau.Biết \(ab:ab=1\)suy ra \(abb:ab\)phải bằng 10
Từ đó:\(b=0,a=1\)và đẳng thức đã cho chính là :
\(11.10=100+10\)
Chúc bạn học tốt ( -_- )
aa.ab= abb+ab
=> a.11.ab= 10.ab+b+ab
=11.ab+b
=> 11.ab.a-11.ab= b
=> 11.ab.[a-1]= b
Với a= 1 thì b= 0
Với a > 1 => b > 9 [loại]
Vậy a = 1 ; b= 0