K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2016

a)

I là trung điểm của AB

I là trung điểm của MN (M đối xứng N qua I)

=> AMBN là hình bình hành

mà AM = MB (AM là đường trung tuyến của tam giác ABC vuông tại A)

=> AMBN là hình thoi

b)

Tam giác ABC vuông tại A có:

BC2 = AB2 + AC2 (định lý Pytago)

= 122 + 162

= 144 + 256

= 400 (cm)

BC = \(\sqrt{400}\) = 20 (cm)

mà AM = \(\frac{1}{2}\)BC = 20 : 2 = 10 (cm) (AM là đường trung tuyến của tam giác ABC vuông tại A)

AN = MB (AMBN là hình thoi)

mà MB = MC (M là trung điểm của BC)

=> AN = MC

mà AN // MC (AMBN là hình thoi)

=> ACMN là hình bình hành

=> MN = AC

mà AC = 16 (cm)

=> MN = 16 (cm)

\(S=\dfrac{12\cdot9}{2}=6\cdot9=54\left(cm^2\right)\)

2 tháng 1 2022

bổ sung
A. 108cm2 B. 54cm C. 54cm2 D. 15cm2

28 tháng 2 2022

tôi ko bt, lêu lêu

28 tháng 2 2022

?

8 tháng 2 2021

A B C 16 12 H

1) Có \(\Delta ABC\) vuông 

=> S\(\Delta ABC\) = \(\dfrac{AB.AC}{2}\) = \(\dfrac{16.12}{2}\) = 96 (cm2)

2) Có \(\Delta ABC\) vuông , theo định lý Pytago ta có :

 AB +  AC2 =  BC2

=> 162 + 122 = BC2

=> 400            = BC2

=> BC             = 20 (cm)

Ta có :  S\(\Delta ABC\)  =  S\(\Delta ABH\)  +  S\(\Delta ACH\)

=>  \(\dfrac{BH.AH}{2}+\dfrac{HC.AH}{2}=S\Delta ABC\)

=>  \(\dfrac{BH.AH+HC.AH}{2}=S\Delta ABC\)

=> \(\dfrac{AH.\left(BH+HC\right)}{2}=S\Delta ABC\)

=> \(\dfrac{AH.BC}{2}\)               =  96

=> AH                         =  96 .  \(\dfrac{2}{BC}\) = 96 .  \(\dfrac{2}{20}\) = 9.6 (cm)

3) Có \(\Delta ABH\) vuông , theo định lý Pytago ta có :

    BH2 = AB2 - AH2

=>BH= 162 - 9.62 = 163.84

=> BH = 12.8 (cm)

=> CH = BC - BH = 20 - 12.8 = 7.2 (cm)

 

Bài 2: 

a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)

b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

c: \(BC=\sqrt{5^2+12^2}=13\left(cm\right)\)

1 tháng 10 2023

Áp dụng định lý Py-ta-go vào tam giác vuông ABC ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AC=\sqrt{BC^2-AB^2}\)

\(\Rightarrow AC=\sqrt{20^2-12^2}=16\left(cm\right)\)

Mà: \(sinB=\dfrac{AC}{BC}=\dfrac{16}{20}\)

\(\Rightarrow sinB=\dfrac{4}{5}\Rightarrow\widehat{B}\approx53^o\)

\(\Rightarrow\widehat{C}=180^o-90^o-53^o\approx37^o\)

a: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

AH=12*16/20=192/20=9,6cm

b: Xét ΔBHA vuông tại H và ΔBAC vuông tại A có

góc B chung

=>ΔBHA đồng dạng với ΔBAC

25 tháng 1 2017

Xét tam giác ABC vuông tại A có:

Đáp án cần chọn là: B

NV
20 tháng 3 2023

Do tam gaics ABC vuông tại A nên:

\(S_{ABC}=\dfrac{1}{2}AB.AC=96\left(cm^2\right)\)

31 tháng 8 2019

Đáp án D