K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2015

=> x6 - 64 = 0 => x6 = 64 => x6 = 26 => x = 2

hoặc 2x - 4 = 0 => 2x = 4 => x = 2 

Vậy x = 2

11 tháng 12 2021

⇔5-x=0;6+6x=0;2x-4=0

TH1: 5-x=0           TH2:6+6x=0              TH3:2x-4=0

   ⇔x=5                ⇔x=-1                        ⇔x=2

       Vậy x∈{5;-1;2}

20 tháng 5 2023

`(4x+2)^2+(1-5x)^2-4(2x+1)(1-5x)=0`

`=> (4x+2)^2-4(2x+1)(1-5x)+(1-5x)^2=0`

`=> (4x+2-1+5x)^2=0`

`=> (9x+1)^2=0`

`=> 9x+1=0`

`=> 9x=-1`

`=> x= -1/9`

Vậy \(S=\left\{-\dfrac{1}{9}\right\}\)

20 tháng 12 2021

\(\Leftrightarrow2x^2-11x+5-2x^2+10x=25\Leftrightarrow-x=20\Leftrightarrow x=-20\)

2 tháng 9 2021

Đặt x^2=t

pt có 4 no pb=>pt2t^2-(m-1)t+m-3=0 có 2 no pb >0

=>\(\left\{{}\begin{matrix}\Delta>0\\P>0\\S>0\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}m^2-2m+1-4m+12>0\\\dfrac{m-3}{2}>0\\m-1>0\end{matrix}\right.\)=>...=>m>3

2 tháng 9 2021

Vậy m>3

7 tháng 11 2021

\(\Leftrightarrow\left(x-2021\right)\left(x-5\right)-\left(x-2021\right)=0\\ \Leftrightarrow\left(x-2021\right)\left(x-6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2021\\x=6\end{matrix}\right.\)

10 tháng 11 2021

\(a,\Leftrightarrow\left(x+2\right)\left(x+2-x+3\right)=0\\ \Leftrightarrow5\left(x+2\right)=0\Leftrightarrow x=-2\\ b,\Leftrightarrow2x\left(x-1\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\\ c,\Leftrightarrow\left(x-1-2x-1\right)\left(x-1+2x+1\right)=0\\ \Leftrightarrow3x\left(-x-2\right)=0\Leftrightarrow-3x\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

31 tháng 7 2023

a) (2x - 5)2 - (5 + 2x) = 0

<=> 4x2 - 22x + 20 = 0 

\(\Leftrightarrow\left(2x-\dfrac{11}{2}\right)^2=\dfrac{41}{4}\)

\(\Leftrightarrow x=\dfrac{\pm\sqrt{41}+11}{4}\)

b) \(27x^3-54x^2+36x=0\)

\(\Leftrightarrow x\left(3x^2-6x+4\right)=0\)

\(\Leftrightarrow x=0\) (Vì \(3x^2-6x+4=3\left(x-1\right)^2+1>0\forall x\))

c) x3 + 8 - (x + 2).(x - 4) = 0

\(\Leftrightarrow\left(x+2\right).\left(x^2-2x+4\right)-\left(x+2\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-3x+8\right)=0\)

\(\Leftrightarrow x=-2\) (Vì \(x^2-3x+8=\left(x-\dfrac{3}{2}\right)^2+\dfrac{23}{4}>0\))

d) \(x^6-1=0\)

\(\Leftrightarrow\left(x^2\right)^3-1=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^4+x^2+1\right)=0\)

\(\Leftrightarrow x^2-1=0\) (Vì \(x^4+x^2+1>0\))

\(\Leftrightarrow x=\pm1\)

31 tháng 7 2023

\(d,x^6-1=0\\ \Leftrightarrow\left(x^2\right)^3-1^3=0\\ \Leftrightarrow\left(x^2-1\right)\left(x^4+x^2+1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x^4+x^2+1=0\left(Vô.lí,vì:x^4\ge0;x^2\ge0,\forall x\in R\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\\ c,\left(x^3+8\right)-\left(x+2\right)\left(x-4\right)=0\\ \Leftrightarrow\left(x^3+8\right)-\left(x^2-2x-8\right)=0\\ \Leftrightarrow x^3-x^2+2x+16=0\\ \Leftrightarrow x^3+2x^2-3x^2-6x+8x+16=0\\ \Leftrightarrow x^2\left(x+2\right)-3x\left(x+2\right)+8\left(x+2\right)=0\\ \Leftrightarrow\left(x^2-3x+8\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2-3x+8=0\left(Vô.lí\right)\\x+2=0\end{matrix}\right.\Leftrightarrow x=-2\)