Cho hàm số y = f(x) = x2 – 1 . Tìm x sao cho f(x) = 1 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) f(-2) = -1; f(-1) = 0; f(0) = 1; f(2) = 3
g(-1) = 0,5; g(-2) = 2; g(0) = 0
b) f(x) = 2 ⇒ x = 1
g(x) = 2 ⇒ x = 2 hoặc x = -2
Đáp án là D
Hàm số f(x) có đạo hàm là
f''(x) = 0
Bảng biến thiên
Từ BBT ta thấy hàm số có 2 điểm cực trị.
Do x 1 < x 2 nên x 1 − x 2 < 0
Ta có:
f x 1 − f x 2 = 3 x 1 + 1 − 3 x 2 + 1 = 3 x 1 − x 2 < 0 ⇔ f x 1 < f x 2
Vậy hàm số y = 3x + 1 đồng biến trên R
Do x1 < x2 nên x1 - x2 < 0
Ta có: f(x1 ) - f(x2 )=(3x1 + 1) - (3x2 + 1) = 3(x1 - x2 ) < 0
⇔ f(x1 ) < f(x2 )
Vậy hàm số y = 3x + 1 đồng biến trên R
Chọn đáp án B
Phương pháp
Số điểm cực trị của hàm số y=f(x) là số nghiệm bội lẻ của phương trình f’(x)=0.
Cách giải
Tuy nhiên x=0 là nghiệm bội 2, x=1 là nghiệm bội 4 của phương trình f’(x)=0, do đó chúng không là cực trị của hàm số. Vậy hàm số có duy nhất 1 điểm cực trị x=-1.
Chú ý: HS nên phân tích đa thức f’(x) thành nhân tử triệt để trước khi xác định nghiệm, tránh sai lầm khi kết luận x=1 cũng là cực trị của hàm số.
\(a,f\left(-\dfrac{1}{2}\right)=\dfrac{1}{4}+4=\dfrac{17}{4}\\ f\left(5\right)=25+4=29\\ b,f\left(x\right)=10=x^2+4\Leftrightarrow x^2=6\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{6}\\x=-\sqrt{6}\end{matrix}\right.\)
\(f\left(x\right)=x^2-1\)
\(\Rightarrow f\left(x\right)=1\Leftrightarrow x^2-1=1\)
\(\Leftrightarrow x^2=2\)
\(\Leftrightarrow x=\sqrt{2}\) hoặc \(x=-\sqrt{2}\)
y=f(x)=x2-1
\(\Rightarrow\)f(1)=12-1=0