K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2016

\(f\left(x\right)=x^2-1\)

\(\Rightarrow f\left(x\right)=1\Leftrightarrow x^2-1=1\)

\(\Leftrightarrow x^2=2\)

\(\Leftrightarrow x=\sqrt{2}\) hoặc \(x=-\sqrt{2}\)

21 tháng 12 2016

y=f(x)=x2-1

\(\Rightarrow\)f(1)=12-1=0

5 tháng 5 2018

a) f(-2) = -1; f(-1) = 0; f(0) = 1; f(2) = 3

g(-1) = 0,5; g(-2) = 2; g(0) = 0

b) f(x) = 2 ⇒ x = 1

g(x) = 2 ⇒ x = 2 hoặc x = -2

29 tháng 6 2018

Đáp án là D

Hàm số f(x) có đạo hàm là 

f''(x) = 0 

Bảng biến thiên

Từ BBT ta thấy hàm số có 2 điểm cực trị.

21 tháng 12 2018

 Do x 1 < x 2  nên x 1 − x 2 < 0

Ta có:

f x 1 − f x 2 = 3 x 1 + 1 − 3 x 2 + 1 = 3 x 1 − x 2 < 0 ⇔ f x 1 < f x 2

Vậy hàm số y = 3x + 1 đồng biến trên R

24 tháng 11 2018

Do x1 < x2 nên x1 - x2 < 0

Ta có: f(x1 ) - f(x2 )=(3x1 + 1) - (3x2 + 1) = 3(x1 - x2 ) < 0

⇔ f(x1 ) < f(x2 )

Vậy hàm số y = 3x + 1 đồng biến trên R

22 tháng 5 2018

1 tháng 4 2018

10 tháng 2 2018

19 tháng 2 2017

Chọn đáp án B

Phương pháp

Số điểm cực trị của hàm số y=f(x) là số nghiệm bội lẻ của phương trình f’(x)=0.

Cách giải

Tuy nhiên x=0 là nghiệm bội 2, x=1 là nghiệm bội 4 của phương trình f’(x)=0, do đó chúng không là cực trị của hàm số. Vậy hàm số có duy nhất 1 điểm cực trị x=-1.

Chú ý: HS nên phân tích đa thức f’(x) thành nhân tử triệt để trước khi xác định nghiệm, tránh sai lầm khi kết luận x=1 cũng là cực trị của hàm số.

19 tháng 12 2021

a: f(-1/2)=17/4

f(5)=29

19 tháng 12 2021

\(a,f\left(-\dfrac{1}{2}\right)=\dfrac{1}{4}+4=\dfrac{17}{4}\\ f\left(5\right)=25+4=29\\ b,f\left(x\right)=10=x^2+4\Leftrightarrow x^2=6\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{6}\\x=-\sqrt{6}\end{matrix}\right.\)