K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(3^{2016}-1=\left(3^4-1\right)\cdot A=80\cdot A⋮10\)

28 tháng 10 2017

Ta có 10^n-4

=10^n-1*10-4

=10^n*6

Mà 6 chic hết cho 3

=>10^n-1*6 chia hết cho 3

Vậy 10^n-4 chia hết cho 3

28 tháng 10 2017

vì 10 / 3 dư 1 nên 10^n / 3 dư 1^n (tức là bằng 1)

mà 4 / 3 dư 1 

nên ta có 10^n - 4 / 3 dư 1-1( bằng 0 tức là chia hết )

suy ra 10^n-4 chia hết cho 3

22 tháng 2 2016

vì 2^10+1=2025 chia hết cho 25 => ....

9 tháng 12 2018

a = 3 + 32 + 33 +...+32016

a = ( 3 + 32 ) + ( 33 + 34 ) +...+ ( 32015 + 32016 )

a = 3.( 1 + 3 ) + 33.( 1 + 3 ) +...+ 32015.( 1 + 3 )

a = 3.4 + 33.4 +...+ 32015.4

a = 4.( 3 + 33 +...+ 32015 ) \(⋮\)4

Vậy a chia hết cho 4.

a = 3 + 3+ 3+...+ 32016

a = ( 3 + 32 + 33 ) + ( 34 + 35 + 36 ) +...+ (  32014 + 32015 + 32016 )

a = 3.( 1 + 3 + 32 ) + 34.( 1 + 3 + 32 ) +...+ 32014.( 1 + 3 + 32 )

a = 3.13 + 34.13 +...+ 32014.13

a = 13.( 1 + 34 +...+ 32014 ) \(⋮\)13

Vậy a chia hết cho 13.

9 tháng 12 2018

- chứng minh A chia hết cho 4 trước nha

ta có 

A = 3 + 32 + 33 + ... + 32016

A = ( 3 + 32 ) + ( 33 + 34 ) + ... + ( 32015 + 32016 )

A = 3 . ( 1 + 3 ) + 33 . ( 1 + 3 ) + ... + 32015 . ( 1 + 3 )

A = 3 . 4 + 33 . 4 + ... + 32015 . 4

A = 4 . ( 3 + 33 + ... + 32015 )              ( vì 4 chia hết cho 4 )

=> A chia hết cho 4

- giờ mấy đến A chia hết cho 13

ta có

A = 3 + 32 + 33 + ... + 32016

A = ( 3 + 32 + 33 ) + ( 34 + 35 + 36 ) + ... + ( 32014 + 32015 + 32016 )

A = 3 . ( 1+ 3 + 32 ) + 34 . ( 1 + 3 + 32 ) + ... + 32014 . ( 1 + 3 + 32 )

A = 3 . 13 + 34 . 13 + ... + 32014 . 13

A = 13 . ( 3 + 34 + ... + 42014 )                           ( Vì 13 chia hết cho 13 )

=> A chia hết cho 13

5 tháng 1 2016

a,
102016+2=10...0+2=99...9+1+2=99...9+3
Vì 99...9 và 3 đều chia hết cho 3 nên 102016 chia hết cho 3
b,
102016-1=10...0-1=99...9
Vì 99...9 chia hết cho 9 nên 102016 chia hết cho 9