K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2016

bạn viết rõ ra đi bạn

13 tháng 12 2016

a) x2+2x-3x-6

=x(x+2)-3(x+2)

=(x+2)(x-3)

17 tháng 10 2021

\(b,=x^4-2x^3-x^3+2x^2+3x^2-6x-3x+6\\ =\left(x-2\right)\left(x^3-x^2+3x-3\right)\\ =\left(x-2\right)\left(x-1\right)\left(x^2+3\right)\\ c,=x^4-2x^3+4x^3-8x^2+4x^2-8x+3x-6\\ =\left(x-2\right)\left(x^3+4x^2+4x+3\right)\\ =\left(x-2\right)\left(x^3+3x^2+x^2+3x+x+3\right)\\ =\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)\)

25 tháng 7 2015

 x4+2.x3-13.x2-14x+24

=x3.(x+2)-13x2+12x-26x+24

=x3.(x+2)-x.(13x-12)-2.(13x-12)

=x3.(x+2)-(13x-12)(x+2)

=(x+2)(x3-13x+12)

=(x+2)(x3-x-12x+12)

=(x+2)[x.(x2-1)-12.(x-1)]

=(x+2)[x.(x-1)(x+1)-12.(x-1)]

=(x+2)(x-1)[x.(x+1)-12]

=(x+2)(x-1)(x2+x-12)

=(x+2)(x-1)(x2-3x+4x-12)

=(x+2)(x-1)[x.(x-3)+4.(x-3)]

=(x+2)(x-1)(x-3)(x+4)

3 tháng 2 2019

\(x^3-x^2-14x+24\)

\(=x^3-2x^2+x^2-2x-12x+24\)

\(=x^2\left(x-2\right)+x\left(x-2\right)-12\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+x-12\right)\)

\(=\left(x-2\right)\left(x^2+4x-3x-12\right)\)

\(=\left(x-2\right)\left[x\left(x+4\right)-3\left(x+4\right)\right]\)

\(=\left(x-2\right)\left(x+4\right)\left(x-3\right)\)

3 tháng 2 2019

Ta có:\(x^3-x^2-14x+24=\left(x^3-2x^2\right)+\left(x^2-2x\right)-\left(12x-24\right)\)

                                                    \(=x^2\left(x-2\right)+x\left(x-2\right)-12\left(x-2\right)\)

                                                    \(=\left(x-2\right)\left(x^2+x-12\right)\)

                                                    \(=\left(x-2\right)\left(x^2-3x+4x-12\right)\)

                                                    \(=\left(x-2\right)\left[x\left(x-3\right)+4\left(x-3\right)\right]\)

                                                    \(=\left(x-2\right)\left(x+4\right)\left(x-3\right)\)

a) \(x^3-7x-6=x^3-x^2+x^2-7x-6=x^2\left(x-1\right)+x^2-x-6x+6\)

\(=x^2\left(x-1\right)+\left(x\left(x-1\right)-6\left(x-1\right)\right)\)

\(=\left(x-1\right)\left(x^2+x-6\right)=\left(x-1\right)\left(x^2-2x+3x-6\right)\)

\(\left(x-1\right)\left(x\left(x-2\right)+3\left(x-2\right)\right)=\left(x-1\right)\left(x-2\right)\left(x+3\right)\)

b)\(x^3-x^2-14x+24=x^3-3x^2+2x^2-6x-8x+24\)

\(=x^2\left(x-3\right)+2x\left(x-3\right)-8\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2+2x-8\right)=\left(x-3\right)\left(x^2-2x+4x-8\right)\)

\(=\left(x-3\right)\left(x\left(x-2\right)+4\left(x-2\right)\right)=\left(x-3\right)\left(x-2\right)\left(x+4\right)\)

  CÓ CHỖ NÀO KO HIỂU GỬI THƯ HỎI MIK , MIK NÓI CHO !!~  HOK TỐT ~

 

AH
Akai Haruma
Giáo viên
11 tháng 10 2023

Lời giải:
a. $x^3-4x^2+x+6=(x^3-2x^2)-(2x^2-4x)-(3x-6)$

$=x^2(x-2)-2x(x-2)-3(x-2)=(x-2)(x^2-2x-3)$
$=(x-2)[(x^2+x)-(3x+3)]=(x-2)[x(x+1)-3(x+1)]$

$=(x-2)(x+1)(x-3)$

-------------------

b.

$x^3+7x^2+14x+8=(x^3+x^2)+(6x^2+6x)+(8x+8)$

$=x^2(x+1)+6x(x+1)+8(x+1)=(x+1)(x^2+6x+8)$

$=(x+1)[(x^2+2x)+(4x+8)]=(x+1)[x(x+2)+4(x+2)]$

$=(x+1)(x+2)(x+4)$

10 tháng 10 2023

 Câu a bạn xem lại đề bài nhé. Đa thức đề cho thậm chí còn không có nghiệm hữu tỉ luôn cơ.

 b) Lập sơ đồ Horner:

  1 7 14 8
\(x=-1\) 1 6 8 0

\(\Rightarrow x^3+7x^2+14x+8=\left(x+1\right)\left(x^2+6x+8\right)\)

 Ta thấy đa thức \(g\left(x\right)=x^2+6x+8\), dự đoán được 1 nghiệm \(x=-2\). Ta lại lập sơ đồ Horner:

  1 6 8
\(x=-2\) 1 4 0

\(\Rightarrow g\left(x\right)=\left(x+2\right)\left(x+4\right)\)

Vậy đa thức đã cho có thể được phân tích thành \(\left(x+1\right)\left(x+2\right)\left(x+4\right)\)

 

 

 

 

 

Bài 1:

a: \(5x^3+10xy=5x\left(x^2+2y\right)\)

b: \(x^2+14x+49-y^2\)

\(=\left(x+7\right)^2-y^2\)

\(=\left(x+7+y\right)\left(x+7-y\right)\)