chứng minh rằng luôn tìm được số có dạng 199819981998...1998000000......000 ( trong đó có 1998 nhóm số 1998) chia hết cho 1999
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét dãy số \(1998,19981998,199819981998,...\)đến số có 1999 bộ 1998
vậy dãy trên gồm 1999 số
giả sử rằng không có số nào chia hết cho 1999
nên 1999 trên chỉ có thể rơi vào các trường hợp chia 1999 dư 1, dư 2, ..., dư 1998
do có 1998 khả năng số dư, nên ít nhất có hai số trong dãy là cùng số dư khi chia cho 1999 ( nguyên lí dirichlet)
giả sử hai số đó co x và y bộ 1998 ( x>y
ta có hiệu hai số đó là tích của 10^(4y) và số có (x-y) bộ 1998 phải chia hết cho 1999
điều này là vô lý vì 10^(4y) và số có (x-y) bộ là không chia hết cho 1999
vậy giả sử ban đầu là sai hay tồn tại số chia hết cho 1999
Mình chỉ làm được câu b )
1990 = ( 100 + 99 ) . 10
= [ 100 + ( 100 - 1 ) ] . 10
= 1000 + 1000 - 10
= 2000 - 10
Số 19911991....1991000....000 chia hết cho 2000 ( áp dụng tính chất chia hết cho 1000 và 2 )
Tiếp đó thì số đó còn lại 19911991...1991000... chia hết cho 10 ( áp dụng tính chất chia hết cho 10 ) nên có tồn tại số có dạng 19911991 ... 000 ... 000 chia hết cho 1990
S= (1999+1999^2+1999^3 +....+1999^1998)
=(1999+1999^2)+(1999^3+1999^4)+...+(1999^1997+1999^1998)
=1999(1+1999)+1999^3(1+1999)+...+1999^1997(1+1999)
=1999.2000+1999^3.2000+...+1999^1997.2000
=2000(1999+1999^3+...+1999^1997) CHIA HET CHO 2000
Vậy S chia het cho 2000(đpcm)
Ta xét dãy số 1; 11; 111; ...; 111...11
30 c.số
Khi mỗi số hạng chia cho 29 thì sẽ có 2 số đồng dư
Giả dụ 2 số đó là 111...1 và 111...1 (n > m)
n c.số m c.số
=> 111...1 - 111...1 = 111...100...0 = 111...11 . 10m
n c.số m c.số
Nhưng ƯCLN (10m,29) = 1 => 111...11 chia hết cho 29
Vậy luôn tìm được 1 số có dạng 111...11 chia hết cho 29
Ta có: A=1999+19992+19993+…+19991998
=> A=(1999+19992)+(19993+19994)+...+(19991997+19991998)
=> A=1999.(1+1999)+19993.(1+1999)+…+19991997.(1+1999)
=> A=1999.2000+19993.2000+…+19991997.2000
=> A=(199+19993+…+199919997).2000
=> A chia hết cho 2000
=> (đpcm)
mình tự làm ko copy trong tưng tự
Gọi (1999+19992+19993+...+19991998) = S
Tổng S có : (1998-1)/1+1=1998 (số hạng)
Nếu ta cứ nhóm 2 số hạng liên tiếp kề nhau vào 1 nhóm bắt đầu từ số hạng đầu tiên thì ta được số nhóm là : 1998/2=999 (nhóm)
Ta có : S=1999+19992+19993+...+19991998
Suy ra:S=(1999+19992)+(19993+19994)+...+(19991997+19991998)
Suy ra:S=1999.(1+1999)+19993.(1+1999)+...+19991997.(1+1999)
Suy ra:S=1999.2000+19993.2000+...+19991997.2000
Suy ra:S=2000.(1999+19993+...+19991997)
Vì 2000 chia hết cho 2000 suy ra 2000.(1999+19993+...+19991997) chia hết cho 2000 hay S chia hết cho 2000
Vậy (1999+19992+19993+...+19991998) chia hết cho 2000
đặt \(S=1+4+4^2+......+4^{1999}\)
\(\Rightarrow4S=4+4^2+4^3+....+4^{2000}\)
\(\Rightarrow4S-S=\left(4+4^2+4^3+....+4^{2000}\right)-\left(1+4+4^2+.....+4^{1999}\right)\)
\(\Rightarrow3S=4^{2000}-1\Rightarrow S=\frac{4^{2000}-1}{3}\)
Khi đó \(A=75.S=75.\frac{4^{2000}-1}{3}=\frac{75.\left(4^{2000}-1\right)}{3}=\frac{75}{3}.\left(4^{2000}-1\right)=25.\left(4^{2000}-1\right)=25.4^{2000}-25\)
Ta có: 42000-1=(44)500-1=(...6)-1=....5
=>25.42000-25=25.(....5)-25=(...5)-25=....0 chia hết cho 100
Vậy ta có điều phải chứng minh
75 chia hết cho 25.
42007 + ... + 4 + 1 chia 4 dư 1 hay không chia hết cho 4
=> 75(42007 + ... + 4 + 1) không chia hết cho 100.