K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2016

Có: \(x^2+y^2+z^2=xy+yz+xz\)

\(\Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2xz\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2-2xz+z^2\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)

\(\Leftrightarrow\begin{cases}x-y=0\\y-z=0\\x-z=0\end{cases}\)\(\Leftrightarrow x=y=z\)

Lại có: \(x^{2015}+y^{2015}+z^{2015}=3^{2016}\)

\(\Leftrightarrow x^{2015}+x^{2015}+x^{2015}=3^{2016}\)

\(\Leftrightarrow3x^{2015}=3^{2016}\)

\(\Leftrightarrow x=3\)

Vậy \(x=y=z=3\)

18 tháng 8 2016
Nếu còn cần bài giải thì inbox mình
18 tháng 8 2016

Giup mình với nka^^

23 tháng 2 2016

ai đó làm giúp mình , mình tích cho

23 tháng 2 2016

nhân 2 vế cho 2

=>2x2+2y2+2z2=2xy+2yz+2zx

=>2x2+2y2+2z2-2xy-2yz-2zx=0

=>(2x2-2xy)+(2y2-2yz)+(2z2-2zx)=0

=>(x-y)2+(y-z)2+(z-x)2=0

mà (x-y)2 >= 0 với mọi x,y

(y-z)2 >= 0 với mọi y,z

(z-x)2 >=0 với mọi z,x

=>(x-y)2+(y-z)2+(z-x)2 >= 0

mà theo đề:(x-y)2+(y-z)2+(z-x)2=0

=>(x-y)2=(y-z)2=(z-x)2=0

=>x=y

   y=z

   z=x

hay x=y=z

do đó x2015+y2015+z2015=32016

<=>x2015+x2015+x2015=32016

<=>3x2015=32016<=>x2015=32016:3=32015<=>x=2015

Vậy x=y=z=2015

4 tháng 11 2018

\(x^2+y^2+z^2=xy+yz+xz\)

\(2x^2+2y^2+2z^2=2xy+2yz+2xz\)

\(2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)

\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)=0\)

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Vì mũ chẵn luôn lớn hơn hoặc bằng 0

\(\Rightarrow\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}\Rightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Rightarrow}}x=y=z\)

\(\Rightarrow x^{2015}+y^{2015}+z^{2015}=x^{2015}+x^{2015}+x^{2015}=3x^{2015}\)

\(\Rightarrow3x^{2015}=3^{2016}\)

\(\Rightarrow x^{2015}=3^{2015}\)

\(\Rightarrow x=3\)

Vậy \(x=y=z=3\)

20 tháng 7 2017

\(x^2+y^2+z^2=xy+yz+xz\)

\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz=0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)

\(\Rightarrow x=y=z\)

Mà \(x^{2015}+y^{2015}+z^{2015}=3^{2016}\Rightarrow x^{2015}+x^{2015}+x^{2015}=3^{2016}\)

\(\Leftrightarrow3x^{2015}=3^{2016}\Leftrightarrow x^{2015}=3^{2015}\Rightarrow x=3\)

Vậy \(x=y=z=3\)

9 tháng 6 2016

(x+y+z)^2=0

x^2+y^2+z^2+2xy +2yz+2xz=0

x^2+y^2+z^2+2(xy+yz+xz)=0

Vì xy + yz +xz=0 nên x^2+y^2+z^2=0.

Vì x^2, y^2, z^2 luôn lớn hơn hoặc bằng 0 mà x^2+y^2+z^2=0.Vì vậy:

x^2=0, y^2=0, z^2=0

x=y=z=0

Thay x=y=z=o vào S ta được: S=1

25 tháng 4 2020

Natsu Dragneel 2005 pha gần cuối phải là:

\(3.x^{2015}=3.3^{2015}\Leftrightarrow x^{2015}=3^{2015}\Rightarrow x=3\)

ms đúng nha!

25 tháng 4 2020

AD BĐT cô - si cho ba số không âm x2 ; y2 ; z2 , ta có :

x2 + y2 ≥ 2√x2y2 = 2xy ( dấu bằng xảy ra khi x = y )

Tương tự : y2 + z2 ≥ 2yz ( dấu ... khi y = x )

z2 + x2 ≥ 2zx ( ... z = x )

⇒ 2 ( x2 + y2 + z2 ) ≥ 2 ( xy + yz + zx )

⇔ x2 + y2 + z2 ≥ xy + yz + zx

Dấu = xảy ra khi x = y = z

⇒ x2015 + y2015 + z2015 = 3x2015 = 32016

⇔ 32015. x = 32015. 3 ⇒ x = 3

⇒ x = y = z = 3

12 tháng 2 2020

đậu fuck

b: 5x^2+5y^2+8xy-2x+2y+2=0

=>4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0

=>(x-1)^2+(y+1)^2+(2x+2y)^2=0

=>x=1 và y=-1

M=(1-1)^2015+(1-2)^2016+(-1+1)^2017=1

23 tháng 8 2016

ta có : x^2 + y^2 +z^2 = xy + yz + xz
=> 2x^2 + 2y^2 +2z^2 = 2xy + 2yz + 2xz
=> ( x^2 -  2xy + y^2) + ( y^2 - 2yz + z^2 ) + ( z^2 -2xz + x^2 ) =0
=> ( x-y )^2 + ( y-z )^2 + ( z -x)^2 =0
=> x =y=z
thay vào .......