Cho a,b thỏa mãn :a^2+b^2+5=2a+4b.Tính giá trị P=|2a-3b|+a+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
a, 2A+3B=0 <=> \(\dfrac{10}{2m+1}+\dfrac{12}{2m-1}=0\)
<=>10(2m-1)+ 12(2m+1) =0
<=> 44m +2 =0
<=> m=-1/22
b, AB= A+B <=> \(\dfrac{20}{\left(2m-1\right)\left(2m+1\right)}=\dfrac{5}{2m+1}+\dfrac{4}{2m-1}\)
<=> 20 = 5(2m -1) + 4(2m+1)
<=> 20 = 18m - 1
<=> m=7/6
cho hai số , b thỏa mãn a + 3b = 0 tính giá trị biểu thức M = \(\frac{2a+b}{a-b}-\frac{2a-b}{a+2b}\)
Thay a=-3b vào M
\(DK.a\ne0;b\ne0\)
\(M_b=\frac{2a+b}{a-b}-\frac{2a-b}{a+2b}=\frac{-6b+b}{-3b-b}-\frac{-6b-b}{-3b+2b}=\frac{5}{4}-\frac{-7}{-1}=-\frac{23}{4}\)
⇔ 10(2m – 1) + 12(2m + 1) = 0
⇔ 20m – 10 + 24m + 12 = 0
⇔ 44m + 2 = 0
⇔ m = - 1/22 (thỏa)
Vậy m = - 1/22 thì 2A + 3B = 0.
Ta có:a2+b2+5=2a+4b
⇔ (a2-2a+1)+(b2-4b+4)=0
⇔ (a-1)2+(b-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-1\right)^2=0\\\left(b-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
Thay vào P ta có:
\(P=\left|2.1-3.2\right|+1+5=10\)