K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2016

ta có x-x2-1

=\(-x^2+x-1\)

=\(-\left(x^2-x+1\right)\)

=\(-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1\right)\)

=\(-\left(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right)\)

=\(-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)

ta có \(-\left(x-\frac{1}{2}\right)^2< 0\\ \)

\(-\frac{3}{4}< 0\)

=> 2 vế công lai luôn nhỏ hơn 0 với mọi x thuộc R

6 tháng 11 2019

a) \(A=x^2-2x+2=\left(x-1\right)^2+1>0\forall x\inℝ\)

b) \(x-x^2-3=-\left(x^2-x+3\right)\)

\(=-\left(x^2-x+\frac{1}{4}+\frac{11}{4}\right)\)

\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)

\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{11}{4}\le\frac{-11}{4}< 0\forall x\inℝ\)

24 tháng 8 2024

x²-2x+2=(x²-2x+1)+1=( x-1)²+1

Mà (x-1)²≥0 với mọi x

=> (x-1)²+1>0 với mọi x

=> x²-2x+2>0 với mọi x

26 tháng 7 2016

a)\(x^2+2xy+1+y^2=\left(x+y\right)^2+1\)

Vì \(\left(x+y\right)^2\ge0\)với mọi \(x,y\in\)

nên \(\left(x+y\right)^2+1>0\)với mọi \(x,y\in R\)

Vậy biểu thức \(x^2+2xy+y^2+1>0\left(x;y\in R\right)\)

b) \(-x^2+x-1=-\left(x^2-2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\left(x\in R\right)\)

nên \(-\left(x-\frac{1}{2}\right)^2\le0\left(x\in R\right)\)

do đó \(-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0\left(x\in R\right)\)

Vậy biểu thức \(x-x^2-1< 0\left(x\in R\right)\)

14 tháng 9 2018

a) x2 + 2xy + 1 +y2 = (x2+2xy+y2)+1=(x+y)2+1 mà (x+y)2 luôn lớn hơn hoặc bằng 0 với mọi x,y

=>x2+2xy+1+y2>1>0

b)x-x2-1=-(x2-x+1)=-((x2-2.x.0,5+0,25)+0,75)=-((x-0,5)2+0,75) mà (x-0,5)2 luôn lớn hơn hoặc bằng 0 vớ mọi x

=>x-x2-1<0

TƯỞNG KHÔNG DỄ NHƯNG DỄ KHÔNG TƯỞNG!

13 tháng 8 2018

\(x^2-2xy+y^2+1=\left(x^2-2xy+y^2\right)+1=\left(x-y\right)^2+1>0\) nhé!

\(x-x^2-1=-\left(x^2-x+1\right)=-\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}< 0\)

13 tháng 8 2018

câu a chứng minh =0 cơ

4 tháng 12 2017

- x2 + 2x - 2

= - ( x2 - 2x + 1) - 1

= - ( x - 1)2 - 1

Do : - ( x - 1)2 nhỏ hơn hoặc bằng 0 với mọ x thuộc R

=> - ( x - 1)2 - 1 nhỏ hơn hoặc bằng -1 với ọõi x thuộc R

Dấu bằng xảy ra khi : x - 1 = 0 => x = 1

Vậy,....

5 tháng 7 2015

x^2-x+1>0

<=>x2-2x.1/2+1/4+3/4>0

<=>(x-1/2)2+3/4 >0 ( luôn đúng với mọi x vì (x-1/2)2\(\ge\)0 với mọi x)

vậy x^2-x+1>0 với mọi x thuộc R

3 tháng 11 2017

Mọi người giúp với 

Tìm x

x^2+5x=0

Chứng minh x^2-2x+3>0 với mọi số thực x

Đường trung bình của một tam là đoạn thẳng nối 2 trung điểm hai cạnh của tam giác.Cho tam giác ABC có I là trung điểm của cạnh AB.Qua I kẻ đường thẳng a // với cạnh BC cắt AC tại K

a) Chứng minh IK là đường trung bình của tam giác ABC

b) Tính độ dài IK với BC=12cm

c) Qua K kẻ đường thẳng b // với AB cắt BC tại L . Chứng minh rằng tứ giác BLKL là hình bình hành

26 tháng 10 2017

\(x-x^2-1=-x^2+x-1=-\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\)

Ta có: \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\in R\)

\(\Rightarrow-\left(x-\dfrac{1}{2}\right)^2\le0\forall x\in R\)

\(\Rightarrow-\left(x-\dfrac{1}{2}\right)-\dfrac{3}{4}\le-\dfrac{3}{4}< 0\forall x\in R\)

\(\Rightarrow x-x^2-1< 0\forall x\in R\left(đpcm\right)\)

26 tháng 10 2017

$x-x^2-1$
$=-(x^2-x+1)$
\(=-\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\)
\(=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}< 0\)

Vậy \(x-x^2-1<0\)\(\forall x\in R\) \(\left(ĐPCM\right)\)

25 tháng 8 2015

x2-2xy+y2+1

=(x2-2xy+y2)+1

=(x-y)2+12

mà \(\left(x-y\right)^2\ge0;1^2>0\)

=> x2-2xy+y2+1 > 0 với mọi x,y \(\in\) R

28 tháng 10 2018

\(x^2-2xy+y^2+1=\left(x-y\right)^2+1\)

\(\left(x-y\right)^2\ge0\)

\(\Rightarrow\left(x-y\right)^2+1>0\)

Vậy \(\left(x-y\right)^2+1>0\) với mọi \(x,y\in R\)