điều kiện xác định của phương trình \(\dfrac{8x+1}{2x+5}=\dfrac{4x+3}{x-2}\)là?
A. x \(\ne\)2 B. x \(\ne\)\(\dfrac{-5}{2}\) C. x \(\ne\)2 hoặc x \(\ne\)\(\dfrac{-5}{2}\) D. x\(\ne\)2 và x\(\ne\)\(\dfrac{-5}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để pt được xác định thì :
\(x-2\ne0;x^2-1\ne0\)
=>\(\left\{{}\begin{matrix}x\ne2\\x\ne-1\\x\ne1\end{matrix}\right.\)
Vậy chọn B
Điều kiện xác định là `{(x-3 ne 0),(x(x-3) ne 0):}`
`<=>{(x ne 3),(x ne 0):}`
`=>bb A`
ĐCXĐ: \(\left\{{}\begin{matrix}x\ne0\\x-3\ne0\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x\ne0\\x\ne3\end{matrix}\right.\)
Với `x \ne -5,x \ne -1` có:
`A=[x+2]/[x+5]+[-5x-1]/[x^2+6x+5]-1/[1+x]`
`A=[(x+2)(x+1)-5x-1-(x+5)]/[(x+5)(x+1)]`
`A=[x^2+x+2x+2-5x-1-x-5]/[(x+5)(x+1)]`
`A=[x^2-3x-4]/[(x+5)(x+1)]`
`A=[(x-4)(x+1)]/[(x+5)(x+1)]`
`A=[x-4]/[x+5]`
\(=\dfrac{x+2}{x+5}+\dfrac{-5x-1}{x^2+x+5x+5}-\dfrac{1}{x+1}\\ =\dfrac{x+2}{x+5}+\dfrac{-5x-1}{\left(x^2+x\right)+\left(5x+5\right)}-\dfrac{1}{x+1}\\ =\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x+5\right)}+\dfrac{-5x-1}{x\left(x+1\right)+5\left(x+1\right)}-\dfrac{x+5}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x+5\right)}+\dfrac{-5x-1}{\left(x+1\right)\left(x+5\right)}-\dfrac{x+5}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{x^2+2x+x+2-5x-1-x-5}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{x^2-3x-4}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{x^2+x-4x-4}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{\left(x^2+x\right)-\left(4x+4\right)}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{x\left(x+1\right)-4\left(x+1\right)}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{\left(x+1\right)\left(x-4\right)}{\left(x+1\right)\left(x+5\right)}\\ =\dfrac{x-4}{x+5}\)
a)
\(\frac{x^2-16}{4x-x^2}=\frac{x^2-4^2}{x(4-x)}=\frac{(x-4)(x+4)}{x(4-x)}=\frac{x+4}{-x}\)
b) \(\frac{x^2+4x+3}{2x+6}=\frac{x^2+x+3x+3}{2(x+3)}=\frac{x(x+1)+3(x+1)}{2(x+3)}=\frac{(x+1)(x+3)}{2(x+3)}=\frac{x+1}{2}\)
c)
\(\frac{15x(x+y)^3}{5y(x+y)^2}=\frac{5.3.x(x+y)^2.(x+y)}{5y(x+y)^2}=\frac{3x(x+y)}{y}\)
d) \(\frac{5(x-y)-3(y-x)}{10(x-y)}=\frac{5(x-y)+3(x-y)}{10(x-y)}=\frac{8(x-y)}{10(x-y)}=\frac{8}{10}=\frac{4}{5}\)
e) \(\frac{2x+2y+5x+5y}{2x+2y-5x-5y}=\frac{7x+7y}{-3x-3y}=\frac{7(x+y)}{-3(x+y)}=\frac{-7}{3}\)
f) \(\frac{x^2-xy}{3xy-3y^2}=\frac{x(x-y)}{3y(x-y)}=\frac{x}{3y}\)
g) \(\frac{2ax^2-4ax+2a}{5b-5bx^2}=\frac{2a(x^2-2x+1)}{5b(1-x^2)}=\frac{2a(x-1)^2}{5b(1-x)(1+x)}\)
\(=\frac{2a(x-1)}{5b(-1)(x+1)}=\frac{2a(1-x)}{5b(x+1)}\)
\(=\dfrac{-3\left(x-2\right)-2\left(x+2\right)+4x}{x^2-4}\)
\(=\dfrac{-3x+6-2x-4+4x}{x^2-4}\)
\(=\dfrac{-x+2}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=-\dfrac{1}{x+2}\left(x\ne2;x\ne-2\right)\)
\(\dfrac{-3}{x+2}-\dfrac{2}{x-2}+\dfrac{4x}{x^2-4}\left(x\ne\pm2\right)\)
\(=\dfrac{-3\left(x-2\right)-2\left(x+2\right)+4x}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{-3x+6-2x-4+4x}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{-x+2}{\left(x-2\right)\left(x+2\right)}\)
\(=-\dfrac{1}{x+2}\)
a: Khi x=1 thì\(P=\dfrac{1-2}{1+2}=\dfrac{-1}{2}\)
b: \(=\dfrac{3x+6+5x-6+2x^2-4x}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x^2+4x}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x}{x-2}\)
c: \(P=A\cdot B=\dfrac{2x}{x-2}\cdot\dfrac{x-2}{x+1}=\dfrac{2x}{x+1}\)
\(P-2=\dfrac{2x-2x-2}{x+1}=\dfrac{-2}{x+1}\)
P<=2
=>x+1>0
=>x>-1
ĐKXĐ: \(\left\{{}\begin{matrix}2x+5\ne0\\x-2\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-\dfrac{5}{2}\\x\ne2\end{matrix}\right.\)
D
Chọn D