K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2016

\(P=\left|x-2011\right|+\left|x-1\right|=\left|2011-x\right|+\left|x-1\right|\ge\left|2011-x+x-1\right|=2010\)

\(\Rightarrow MIN_P=2010\Leftrightarrow\left(2011-x\right)\left(x-1\right)\ge0\)

\(\Leftrightarrow1\le x\le2011\)

Vậy MINP=2010 khi \(1\le x\le2011\)

 

6 tháng 2 2017

bài này ta có thể giải theo 2 cách 

ta có A = \(\frac{x^2-2x+2011}{x^2}\)

\(\frac{x^2}{x^2}\)\(\frac{2x}{x^2}\)\(\frac{2011}{x^2}\)

= 1 - \(\frac{2}{x}\)\(\frac{2011}{x^2}\)

đặt \(\frac{1}{x}\)= y ta có 

A= 1- 2y + 2011y^2 

cách 1 : 

A = 2011y^2 - 2y + 1 

= 2011 ( y^2 - \(\frac{2}{2011}y\)\(\frac{1}{2011}\)

= 2011( y^2 - 2.y.\(\frac{1}{2011}\)\(\frac{1}{2011^2}\)\(\frac{1}{2011^2}\) + \(\frac{1}{2011}\)

= 2011 \(\left(\left(y-\frac{1}{2011}\right)^2\right)+\frac{2010}{2011^2}\)

= 2011\(\left(y-\frac{1}{2011}\right)^2\)\(\frac{2010}{2011}\)

vì ( y - \(\frac{1}{2011}\)2>=0 

=> 2011\(\left(y-\frac{1}{2011}\right)^2\)\(\frac{2010}{2011}\)> = \(\frac{2010}{2011}\)

hay A >=\(\frac{2010}{2011}\)

cách 2  

A = 2011y^2 - 2y + 1 

= ( \(\sqrt{2011y^2}\)) - 2 . \(\sqrt{2011y}\)\(\frac{1}{\sqrt{2011}}\)\(\frac{1}{2011}\)\(\frac{2010}{2011}\)

\(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)\(\frac{2010}{2011}\)

vì \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)> =0 

nên \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)\(\frac{2010}{2011}\)>= \(\frac{2010}{2011}\)

hay A >= \(\frac{2010}{2011}\)

4 tháng 4 2017

Giá trị nhỏ nhất của A là 2011 (vì A đạt giá trị nhỏ nhất khi /x-y/ + /x+1/ đạt giá trị nhỏ nhất hay bằng 0)

4 tháng 4 2017

giá trị nhỏ nhất là 2011

đúng 100% !tk nha

10 tháng 12 2016

là 1 nha

19 tháng 1 2018

hay

5 tháng 11 2016

A = / x - 2011 / + / x - 1 /

=> A = / x - 2011 / + / 1 - x /

Áp dụng công thức / a / + / b / > hoặc = / a + b /

=> A = / x - 2011 / + / 1 - x / > hoặc = / x - 2011 + 1 - x /

=> A = / x - 2011 / + / 1 - x / > hoặc = / -2010 /

=> A = / x - 2011 / + / 1 - x / > hoặc = 2010

Dấu bằng xảy ra khi ( x - 2011 ).( 1 - x ) > hoặc = 0

=>( x - 2011 ).( x - 1 ) < hoặc = 0

Do x - 2011 < x - 1

=> x - 2011 < hoặc = 0    ;     x - 1  > hoặc = 0

=> x < hoặc = 2011   ;   x > hoặc = 1

=> 1 < hoặc = x < hoặc = 2011

3 tháng 2 2017

vì A =/x-2011/+/x-1/ mà A nhỏ nhất nên =>/x-2011/+/x-1/ cũng nhỏ nhất

vì /x-2011/ và /x-1/ luôn luôn là số tự nhiên

mà /x-2011/ và /x-1/ nhỏ nhất nên => /x-2011/ và /x-1/ =0

0+0=0

=>A =0

18 tháng 5 2016

vì |x-2010|\(\ge\)0

(y+2011) 2010\(\ge\)0

=>|x-2010|+(y+2011) 2010\(\ge\)0

=>A=|x-2010| + (y+2011) 2010 +2011 \(\ge\)0+2011

dấu "=" xảy ra khi |x-2010|=(y+2011)2010=0

<=>x=2010 và y=-2011

vậy Amin=2011 khi x=2010 và y=-2011

13 tháng 3 2015

Có ( x+2011)^2 lon hon hoac bang 0

=> (x+ 2011)^2 -2012 lon hon hoac bang -2012

=>GTNN là -2012 hay x= -2011

27 tháng 2 2020

ta có (x+2011)^2 \(\ge0\)

=> \(\left(x+2011\right)^2-2012\ge-2012\)

=> dấu "=" xảy ra khi zà chỉ khi 

\(\left(x+2011\right)^2-2012=0\)

=\(x=-2011\)