K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2019
https://i.imgur.com/BisGxxf.jpg
17 tháng 8 2019
https://i.imgur.com/onDIc4W.jpg
HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có

\(\begin{array}{l}\sin \left( {x + \frac{\pi }{4}} \right) = \frac{{\sqrt 2 }}{2}\\ \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = \sin \left( {\frac{\pi }{4}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{4}{\rm{ }} = {\rm{ }}\frac{\pi }{4} + k2\pi ;k \in Z\\x + \frac{\pi }{4}{\rm{ }} = {\rm{ }}\pi {\rm{ - }}\frac{\pi }{4} + k2\pi ;k \in Z\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = {\rm{ }}k2\pi ;k \in Z\\x{\rm{ }} = {\rm{ }}\frac{\pi }{2} + k2\pi ;k \in Z\end{array} \right.\end{array}\)

Mà \(x \in \left[ {0;\pi } \right]\) nên \(x \in \left\{ {0;\frac{\pi }{2}} \right\}\)

Vậy phương trình đã cho có số nghiệm là 2.

Chọn C

NV
25 tháng 12 2020

\(\Leftrightarrow2\left(cos^2x-sin^2x\right)+sinx.cosx\left(sinx+cosx\right)=m\left(sinx+cosx\right)\)

\(\Leftrightarrow\left(2cosx-2sinx\right)\left(sinx+cosx\right)+sinx.cosx\left(sinx+cosx\right)=m\left(sinx+cosx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(\text{vô nghiệm trên đoạn xét}\right)\\2cosx-2sinx+sinx.cosx=m\left(1\right)\end{matrix}\right.\) 

Xét (1), đặt \(t=cosx-sinx=\sqrt{2}cos\left(x+\dfrac{\pi}{4}\right)\)

\(\Rightarrow\left\{{}\begin{matrix}t\in\left[-1;1\right]\\sinx.cosx=\dfrac{1-t^2}{2}\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2t+\dfrac{1-t^2}{2}=m\)

Xét hàm \(f\left(t\right)=-\dfrac{1}{2}t^2+2t+\dfrac{1}{2}\) trên \(\left[-1;1\right]\)

\(-\dfrac{b}{2a}=2\notin\left[-1;1\right]\) ; \(f\left(-1\right)=-2\) ; \(f\left(1\right)=2\)

\(\Rightarrow-2\le f\left(t\right)\le2\Rightarrow-2\le m\le2\)

NV
5 tháng 10 2021

\(cos^4x-sin^4x=sin3x+cos4x\)

\(\Leftrightarrow\left(cos^2x+sin^2x\right)\left(cos^2x-sin^2x\right)=sin3x+cos4x\)

\(\Leftrightarrow cos2x=sin3x+cos4x\)

\(\Leftrightarrow cos4x-cos2x+sin3x=0\)

\(\Leftrightarrow-2sin3x.sinx+sin3x=0\)

\(\Leftrightarrow sin3x\left(1-2sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin3x=0\\sinx=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{3}\\x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow x=\left\{0;\dfrac{\pi}{3};\dfrac{2\pi}{3};\pi;\dfrac{\pi}{6};\dfrac{5\pi}{6}\right\}\)

\(\Rightarrow\sum x=3\pi\)

NV
22 tháng 9 2020

1.

a.

\(\Leftrightarrow sin\left(3x-30^0\right)=sin\left(45^0\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-30^0=45^0+k360^0\\3x-30^0=135^0+k360^0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{75^0}{3}+k120^0\\x=\frac{165^0}{3}+k120^0\end{matrix}\right.\)

b.

\(sin\left(5x-\frac{\pi}{3}\right)=sin\left(2\pi-\frac{\pi}{4}-2x\right)\)

\(\Leftrightarrow sin\left(5x-\frac{\pi}{3}\right)=sin\left(-\frac{\pi}{4}-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-\frac{\pi}{3}=-\frac{\pi}{4}-2x+k2\pi\\5x-\frac{\pi}{3}=\frac{5\pi}{4}+2x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{84}+\frac{k2\pi}{7}\\x=\frac{19\pi}{36}+\frac{k2\pi}{3}\end{matrix}\right.\)

NV
22 tháng 9 2020

c.

\(4x-\frac{\pi}{3}=k\pi\)

\(\Leftrightarrow x=\frac{\pi}{12}+\frac{k\pi}{4}\)

d.

\(sin\left(2x+\frac{\pi}{6}\right)=-1\)

\(\Leftrightarrow2x+\frac{\pi}{6}=-\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=-\frac{\pi}{3}+k\pi\)

Do \(x\in\left(-\frac{\pi}{4};2\pi\right)\Rightarrow-\frac{\pi}{4}< -\frac{\pi}{3}+k\pi< 2\pi\)

\(\Rightarrow\frac{1}{12}< k< \frac{7}{3}\Rightarrow k=\left\{1;2\right\}\)

\(\Rightarrow x=\left\{\frac{2\pi}{3};\frac{5\pi}{3}\right\}\)

e.

\(sin\left(x+\frac{\pi}{6}\right)=\frac{\sqrt{2}}{2}\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{6}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{6}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+k2\pi\\x=\frac{7\pi}{12}+k2\pi\end{matrix}\right.\) \(\Rightarrow x=\left\{\frac{\pi}{12};\frac{7\pi}{12}\right\}\)