K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2016

\(y=\sqrt{\left(x^2-2x+1\right)+4}=\sqrt{\left(x-1\right)^2+4}\ge\sqrt{4}=2\)

Đẳng thức xảy ra khi x = 1

Vậy min y = 2 khi x = 1

 

8 tháng 12 2016

cam on bn nhe

 

7 tháng 6 2019

Trước hết bằng phép biến đổi tương đương ; ta chứng minh bất đẳng thức phụ sau:

\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}...\)

Biểu diễn: 

\(y=\sqrt{2}\left(\sqrt{x^2-x+\frac{5}{2}}+\sqrt{x^2-2x+2}\right)\)

  \(=\sqrt{2}\left(\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{9}{4}}+\sqrt{\left(1-x\right)^2+1}\right)\)

  \(\ge\sqrt{2}\sqrt{\left(x-\frac{1}{2}+1-x\right)^2+\left(\frac{3}{2}+1\right)^2}=\sqrt{13}.\)

Vậy giá trị nhỏ nhất của \(y=\sqrt{13}\Leftrightarrow x=\frac{4}{5}.\)

21 tháng 10 2016

dùng máy tính bỏ túi fx-570es plus là ra ngay

 

1 tháng 7 2021

\(y=2cos^2x-2\sqrt{3}sinx.cosx+1\)

\(=2cos^2x-1-2\sqrt{3}sinx.cosx+2\)

\(=cos2x-\sqrt{3}sin2x+2\)

\(=2\left(\dfrac{1}{2}cos2x-\dfrac{\sqrt{3}}{2}sin2x\right)+2\)

\(=2cos\left(2x+\dfrac{\pi}{3}\right)+2\)

Ta có: \(cos\left(2x+\dfrac{\pi}{3}\right)\in\left[-1;1\right]\)

\(\Rightarrow min=0\Leftrightarrow cos\left(2x+\dfrac{\pi}{3}\right)=-1\Leftrightarrow2x+\dfrac{\pi}{3}=\pi+k2\pi\Leftrightarrow x=\dfrac{\pi}{3}+k\pi\)

\(\Rightarrow max=4\Leftrightarrow cos\left(2x+\dfrac{\pi}{3}\right)=1\Leftrightarrow2x+\dfrac{\pi}{3}=k2\pi\Leftrightarrow x=-\dfrac{\pi}{6}+\dfrac{k\pi}{2}\)

1 tháng 7 2021

\(y=2cos^2x-\sqrt{3}sin2x+1=cos2x-\sqrt{3}sin2x+2\)

\(y=2.cos\left(2x+\dfrac{\pi}{3}\right)+2\)

\(\forall x\in R->-1\le cos\left(2x+\dfrac{\pi}{3}\right)\)

=> \(Min_y=2.\left(-1\right)+2=0\) 

Mặt khác, theo Bunhiacopxki:

\(\left(cos2x+\sqrt{3}sin2x\right)^2\le\left(1^2+\sqrt{3}^2\right)\left(cos^22x+sin^22x\right)=4\)

=>\(Max_y=4\)

 

NV
6 tháng 7 2021

\(-1\le cos\left(\sqrt{x}+\dfrac{\pi}{4}\right)\le1\Rightarrow-5\le y\le5\)

\(y_{max}=5\) khi \(cos\left(\sqrt{x}+\dfrac{\pi}{4}\right)=1\)

\(y_{min}=-5\) khi \(cos\left(\sqrt{x}+\dfrac{\pi}{4}\right)=-1\)

22 tháng 9 2021

Trường hợp \(\sqrt{x+\dfrac{\pi}{4}}\)thì sao ạ?