K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2017

Ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{\sqrt{n^2}}-\frac{1}{\sqrt{\left(n+1\right)^2}}\right)\)

\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(< \left(1+1\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Áp dụng vào bài toán ta được

\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{2009\sqrt{2008}}\)

\(=2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2008}}-\frac{1}{\sqrt{2009}}\right)\)

\(=2\left(1-\frac{1}{\sqrt{2009}}\right)< 2\)

29 tháng 8 2020

a) Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\) ; \(\frac{1}{3^2}< \frac{1}{2.3}\) ; \(\frac{1}{4^2}< \frac{1}{3.4}\) ; ... ; \(\frac{1}{2010^2}< \frac{1}{2009.2010}\)

=> \(Vt< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(=1-\frac{1}{2010}< 1\)

27 tháng 6 2019

Xét N :

N = \(\frac{1}{2.2}\)+\(\frac{1}{3.3}\)+\(\frac{1}{4.4}\)+...+\(\frac{1}{2009.2009}\)+\(\frac{1}{2010.2010}\)

Ta có :

\(\frac{1}{2.2}\)< \(\frac{1}{1.2}\)

\(\frac{1}{3.3}\)< \(\frac{1}{2.3}\)

...

\(\frac{1}{2009.2009}\)<\(\frac{1}{2008.2009}\)

\(\frac{1}{2010.2010}\)<\(\frac{1}{2019.2010}\)

Cộng vế theo vế của các bất đẳng thức trên , ta có :

\(\frac{1}{2.2}\)+\(\frac{1}{3.3}\)+\(\frac{1}{4.4}\)+...+\(\frac{1}{2009.2009}\)+\(\frac{1}{2010.2010}\) < \(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+...+\(\frac{1}{2008.2009}\)+\(\frac{1}{2019.2010}\)

=> N < 1 - \(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+...+\(\frac{1}{2009}\)-\(\frac{1}{2010}\)

=> N < 1 - \(\frac{1}{2010}\)<1

=> N < 1

18 tháng 6 2019

câu này hay thế!

8 tháng 7 2021

Giúp tui ik cần gấp

26 tháng 11 2015

\(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{\left(1+\frac{1}{n}-\frac{1}{n+1}\right)^2}=1+\frac{1}{n}-\frac{1}{n+1}\)

\(S=1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+....+1+\frac{1}{n}-\frac{1}{n+1}\)

   \(=n+1-\frac{1}{n+1}=\frac{\left(n+1\right)^2-1}{n+1}=\frac{2009^2-1}{2009}\Rightarrow n+1=2009\Rightarrow n=2008\)

3 tháng 9 2017

Bài 1 :

a) -Ta có: tam giác EAC=tam giác BAG(c.g.c

=> EC=BG và góc AEC=góc ABG.

=> EC=BG và EC vuông góc với BG(1).

-Lại có: MI là đường trung bình tam giác EGB

=> MI// BG; MI=1/2. BG.

-Tương tự ta có: +) IN là đường trung bình tam giác EGC.

+) NK là đường trung bình tam giác BGC.

+) MK là đường trung bình tam giác EBC.

=> MI//NK// BG; MI=NK=1/2.BG

và MK//NI//EC; MK=IN=1/2.EC

-Lại có: EC=BG và EC vuông góc với BG( theo (1)).

-Từ các điều trên=> MINK là hình vuông(đpcm). 

Phần b): -Lấy H đối xứng với A qua I; gọi giao điểm của AI với BC là O.

-Ta có: EHGA là hình bình hành=> HG//EA;HG=EA=AB.

=> góc HGA+góc EAG=180 độ. 

-Lại có: góc EAG+góc BAC=180 độ.

=> góc BAC=góc HGA; và có HG=AB, AG=AC.

=> tam giác HGA=tam giác BAC(c.g.c).

=> HA=BC; góc HAG=góc ACB.Mà góc HAG+góc OAC= 90 độ. => góc OAC+góc ACB=90 độ.

=> AI=1/2.BC; AI vuông góc với BC.

-Do tam giác ABC cố định=> đường cao AO từ A xuống BC cố định. 

-Mà IA vuông góc với BC=> I thuộc đường cố định và I thuộc tia đối tia AO sao cho IA=1/2.BC.

=> I là một điểm cố định đi chuyển trên đường cao từ A xuống BC và khoảng cách từ I xuống BC bằng h+1/2.BC.

3 tháng 9 2017

xin lổi 

em mới hc lớp 6 à

thế bài này bạn hỏi hay là tớ hỏi vậy 

cậu chẳng ghi đề bài thì ai làm  

ờ ha mik sửa lại rồi đó

21 tháng 2 2019
  1. TA CÓ A>\(\frac{2010}{2009^2+1+2008}\) +\(\frac{2010}{2009^2+2+2007}\) +...+\(\frac{2010}{2009^2+2009}\)                                                     \(\Rightarrow\)A>2009.\(\frac{2010}{2009^2+2009}\)\(\Rightarrow\)A>\(\frac{2009.2010}{2009.2010}\) \(\Rightarrow\) A>1   (1)                                                                         2.TA CÓ A<\(\frac{2010}{2009^2}\) +\(\frac{2010}{2009^2}\) +...+\(\frac{2010}{2009^2}\)                                                                                               \(\Rightarrow\) A<2009.\(\frac{2010}{2009^2}\) \(\Rightarrow\) A<\(\frac{2010}{2009}\) <2 \(\Rightarrow\) A<2     (2)                                                                                          TỪ (1) VÀ (2) SUY RA 1<A<2 .VẬY A KHÔNG PHẢI SỐ NGUYÊN DƯƠNG    (dpcm)