Tìm tỉ số \(\frac{x}{y}\), biết x,y thỏa mãn:
\(\frac{2x-y}{x+y}\)=\(\frac{2}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2x-y}{x+y}=\frac{2}{3}\Rightarrow\frac{2x-y}{2}=\frac{x+y}{3}=\frac{\left(2x-y\right)-\left(x+y\right)}{2-3}=2y-x\)
\(\Rightarrow2x-y=4y-2x\Rightarrow4x=5y\Rightarrow\frac{x}{y}=\frac{5}{4}\)
Áp dụng công thức lớp 7 ; \(\frac{a}{b}\)= \(\frac{c}{d}\) thì \(\frac{a}{c}\)= \(\frac{b}{d}\)
thì \(\frac{2x-y}{2}\)= \(\frac{x+y}{3}\)= \(\frac{2x-y-\left(x+y\right)}{2-3}\)= \(\frac{x-2y}{-1}\)= - (x - 2y ) = - x + 2y = 2y + (- x) = 2y - x
=> .....................................x/y = 5/4
Ta có : \(\frac{2x-y}{x+y}=\frac{2}{3}\Leftrightarrow3\left(2x-y\right)=2\left(x+y\right)\Leftrightarrow6x-3y=2x+2y\Leftrightarrow4x=5y\Leftrightarrow\frac{x}{y}=\frac{5}{4}\)
Vì \(\frac{2x-y}{x+y}=\frac{2}{3}=>\left(2x-y\right).3=\left(x+y\right).2=>6x-3y=2x+2y\)
\(=>6x-2x=2y-\left(-3y\right)=>6x-2x=2y+3y=>4x=5y=>\frac{x}{y}=\frac{5}{4}\)
Vậy tỉ số x/y=5/4
\(\frac{2x-y}{x+y}=\frac{2}{3}\)
\(\Rightarrow3\left(2x-y\right)=2\left(x+y\right)\)
\(\Rightarrow6x-3y=2x+2y\)
\(\Rightarrow6x-2x=3y+2y\)
\(\Rightarrow4x=5y\)
\(\Rightarrow\frac{x}{y}=\frac{5}{4}\)
\(\Rightarrow\frac{2x+2y-3y}{x+y}=\frac{2}{3}\)
\(\Rightarrow\frac{2\left(x+y\right)-3y}{x+y}=\frac{2}{3}\)
\(\Rightarrow2-\frac{3y}{x+y}=\frac{2}{3}\)
\(\Rightarrow\frac{3y}{x+y}=2-\frac{2}{3}\)
\(\Rightarrow\frac{3y}{x+y}=\frac{4}{3}\)
\(\Rightarrow3y.3=\left(x+y\right).4\)
\(\Rightarrow9y=4x+4y\)
\(\Rightarrow5y=4x\)
\(\Rightarrow\frac{x}{y}=\frac{5}{4}\)
\(\frac{2x-y}{x+y}=\frac{2}{3}\)
\(\Rightarrow3\left(2x-y\right)=2\left(x+y\right)\)
\(\Rightarrow6x-3y=2x+2y\)
\(\Rightarrow6x-2x=2x+3y\)
\(\Rightarrow4x=5y\)
\(\Rightarrow\frac{x}{y}=\frac{5}{4}\)
\(\frac{2x-3y}{x+2y}=\frac{2}{3}=>\left(2x-3y\right).3=\left(x+2y\right).2=>6x-9y=2x+4y=>6x-2x=9y+4y\)
=>4x=13y
hay \(\frac{x}{y}=\frac{13}{4}\)
vậy gtri của tỉ số x/y là 13/4
a/ \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=\left(xy-\frac{1}{xy}\right)^2+4\ge4\)
Suy ra Min M = 4 . Dấu "=" xảy ra khi x=y=1/2
b/ Đề đúng phải là \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{3}{2}\)
Ta có \(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\Rightarrow x+y+z\ge\frac{3}{4}\)
Lại có \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.\frac{3}{4}}=\frac{3}{2}\)
a
Nếu \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)
Nếu \(y>0\Rightarrow3^y⋮3\)
Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý
Vậy.....
b
Không mất tính tổng quát giả sử \(x\ge y\)
Ta có:
\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)
\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)
Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )
Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)
Vậy x=4;y=2 và các hoán vị
Ta có: \(\frac{2x-y}{x+y}\)=\(\frac{2}{3}\)
=> (2x - y).3 = (x+y) .2
6x - 3y = 2x + 2y
6x - 2x = 3y + 2y
4x = 5y
=> \(\frac{x}{5}\)=\(\frac{y}{4}\)
Vậy tỉ số \(\frac{x}{y}\)=\(\frac{5}{4}\)
\(\frac{2x-y}{x+y}=\frac{2}{3}\)
\(\Rightarrow3\left(2x-y\right)=2\left(x+y\right)\)
\(\Rightarrow6x-3y=2x+2y\)
\(\Rightarrow6x-2x=2y+3y\)
\(\Rightarrow4x=5y\)
\(\Rightarrow\frac{x}{y}=\frac{5}{4}\)
Vậy \(\frac{x}{y}=\frac{5}{4}\)