K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2021

\(9x^2+6x^2+x=0\)

\(15x^2+x=0\)

\(x\left(15x+1\right)=0\)

\(\orbr{\begin{cases}x=0\left(TM\right)\\15x=-1\end{cases}\orbr{\begin{cases}x=0\left(TM\right)\\x=-\frac{1}{15}\left(TM\right)\end{cases}}}\)

7 tháng 8 2021

Trả lời:

\(9x^2+6x^2+x=0\)

\(\Leftrightarrow x\left(9x+6x+1\right)=0\)

\(\Leftrightarrow x\left(15x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\15x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{15}\end{cases}}}\)

Vậy x = 0; x = - 1/15 là nghiệm của pt.

17 tháng 2 2021

1/ \(x^4+x^2-2=0\)

\(\Leftrightarrow\left(x^2\right)^2-x^2+2x^2-2=0\\ \Leftrightarrow x^2\left(x^2-1\right)+2\left(x^2-1\right)=0\\ \Leftrightarrow\left(x^2+2\right)\left(x^2-1\right)=0\\ \Leftrightarrow\left(x^2+2\right)\left(x-1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+2=0\\x+1=0\\x-1-0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

2/ \(x^3+3x^2+6x+4=0\)

\(\Leftrightarrow\left(x^3+x^2\right)+\left(2x^2+2x\right)+\left(4x+4\right)=0\\ \Leftrightarrow x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x^2+2x+4\right)=0\)

\(\Leftrightarrow x+1=0\) (do \(x^2+2x+4=\left(x+1\right)^2+3>0,\forall x\))

\(\Leftrightarrow x=-1\).

3/ \(x^3-6x^2+8x=0\)

\(\Leftrightarrow x\left(x^2-6x+8\right)=0\\ \Leftrightarrow x\left[\left(x^2-2x\right)-\left(4x-8\right)\right]=0\\ \Leftrightarrow x\left[x\left(x-2\right)-4\left(x-2\right)\right]=0\\ \Leftrightarrow x\left(x-2\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=4\end{matrix}\right.\)

4/ \(x^4-8x^3-9x^2=0\)

\(\Leftrightarrow x^2\left(x^2-8x-9\right)=0\\ \Leftrightarrow x^2\left(x^2-9x+x-9\right)=0\\ \Leftrightarrow x^2\left(x\left(x-9\right)+\left(x-9\right)\right)=0\\ \Leftrightarrow x^2\left(x+1\right)\left(x-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=0\\x+1=0\\x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=9\end{matrix}\right.\)

9 tháng 8 2021

1, \(x^3+4x^2+4x=0\Leftrightarrow x\left(x^2+4x+4\right)=0\)

\(\Leftrightarrow x\left(x+2\right)^2=0\Leftrightarrow x=-2;x=0\)

2, \(\left(x+3\right)^2-4=0\Leftrightarrow\left(x+3-2\right)\left(x+3+2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=1\)

3, \(x^4-9x^2=0\Leftrightarrow x^2\left(x^2-9\right)=0\)

\(\Leftrightarrow x^2\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=0;\pm3\)

4, \(x^2-6x+9=81\Leftrightarrow\left(x-3\right)^2=9^2\)

\(\Leftrightarrow\left(x-3-9\right)\left(x-3+9\right)=0\Leftrightarrow\left(x-12\right)\left(x+6\right)=0\Leftrightarrow x=-6;x=12\)

5, em xem lại đề nhé

9 tháng 8 2021

à lag tý @@

5, \(x^3+6x^2+9x-4x=0\Leftrightarrow x^3+6x^2+5x=0\)

\(\Leftrightarrow x\left(x^2+6x+5\right)=0\Leftrightarrow x\left(x^2+x+5x+5\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=-1;x=0\)

7 tháng 7 2018

\(x^3-9x+7x^2-63=0\)

\(\Rightarrow\left(x^3+7x^2\right)-9x-63=0\)

\(\Rightarrow x^2\left(x+7\right)-9\left(x+7\right)=0\)

\(\Rightarrow\left(x^2-9\right)\left(x+7\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2-9=0\\x+7=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=9\\x=-7\end{cases}\Rightarrow}\orbr{\begin{cases}x=\pm3\\x=-7\end{cases}}}\)

Vậy ...

14 tháng 7 2021

x3−9x+7x2−63=0x3−9x+7x2−63=0

⇒(x3+7x2)−9x−63=0⇒(x3+7x2)−9x−63=0

⇒x2(x+7)−9(x+7)=0⇒x2(x+7)−9(x+7)=0

⇒(x2−9)(x+7)=0⇒(x2−9)(x+7)=0

⇒{x2−9=0x+7=0⇒{x2=9x=−7⇒{x=±3x=−7⇒{x2−9=0x+7=0⇒{x2=9x=−7⇒{x=±3x=−7

Vậy ...

23 tháng 6 2020

a) 5x + 6 = 0

<=> 5x = -6

<=> x = \(-\frac{6}{5}\)

Vậy phương trình có tập nghiệm là: S = {\(-\frac{6}{5}\)}
b) 9x - 3 = 6x + 21

<=> 3x = 24

<=> x = 8

Vậy phương trình có tập nghiệm là: S = {8}
c) x3 - 9x = 0

<=> x(x2 - 9) = 0

<=> x(x - 3)(x + 3) = 0

<=> \(\left[{}\begin{matrix}x=0\\x-3=0\\x+3=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: S = {0; 3; -3}
d) ĐKXĐ: \(x\ne2;x\ne-2\)

\(\frac{1}{x-2}-\frac{x^2-4}{4-x^2}=0\)

\(\Leftrightarrow\frac{1}{x-2}+\frac{x^2-4}{x^2-4}=0\)

\(\Rightarrow x+2+x^2-4=0\)

\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow x^2+2x-x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\left(loại\right)\\x=1\left(TM\right)\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: S ={1}

a) Ta có: 5x+6=0

⇔5x=-6

hay \(x=-\frac{6}{5}\)

Vậy: \(S=\left\{-\frac{6}{5}\right\}\)

b) Ta có: 9x-3=6x+21

⇔9x-6x=21+3

⇔3x=24

hay x=8

Vậy: S={8}

c) Ta có: \(x^3-9x=0\)

\(\Leftrightarrow x\left(x^2-9\right)=0\)

\(\Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)

Vậy: S={-3;0;3}

d) ĐKXĐ: x∉{2;-2}

Ta có: \(\frac{1}{x-2}-\frac{x^2-4}{4-x^2}=0\)

\(\Leftrightarrow\frac{1}{x-2}+\frac{4-x^2}{4-x^2}=0\)

\(\Leftrightarrow\frac{1}{x-2}+1=0\)

\(\Leftrightarrow\frac{1}{x-2}+\frac{x-2}{x-2}=0\)

Suy ra: \(1+x-2=0\)

\(\Leftrightarrow x-1=0\)

hay x=1(tm)

Vậy: S={1}

a) Ta có: \(x^4-16x^2=0\)

\(\Leftrightarrow x^2\left(x^2-16\right)=0\)

\(\Leftrightarrow x^2\left(x-4\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x-4=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

Vậy: \(x\in\left\{0;4;-4\right\}\)

b) Ta có: \(9x^2+6x+1=0\)

\(\Leftrightarrow\left(3x\right)^2+2\cdot3x\cdot1+1^2=0\)

\(\Leftrightarrow\left(3x+1\right)^2=0\)

\(\Leftrightarrow3x+1=0\)

\(\Leftrightarrow3x=-1\)

hay \(x=-\frac{1}{3}\)

Vậy: \(x=-\frac{1}{3}\)

c) Ta có: \(x^2-6x=16\)

\(\Leftrightarrow x^2-6x-16=0\)

\(\Leftrightarrow x^2-8x+2x-16=0\)

\(\Leftrightarrow x\left(x-8\right)+2\left(x-8\right)=0\)

\(\Leftrightarrow\left(x-8\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{8;-2\right\}\)

d) Ta có: \(9x^2+6x=80\)

\(\Leftrightarrow9x^2+6x-80=0\)

\(\Leftrightarrow9x^2+6x+1-81=0\)

\(\Leftrightarrow\left(3x+1\right)^2-9^2=0\)

\(\Leftrightarrow\left(3x+1-9\right)\left(3x+1+9\right)=0\)

\(\Leftrightarrow\left(3x-8\right)\left(3x+10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-8=0\\3x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=8\\3x=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{8}{3}\\x=-\frac{10}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{8}{3};-\frac{10}{3}\right\}\)

e) Ta có: \(25\left(2x-1\right)^2-9\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(10x-5\right)^2-\left(3x+3\right)^2=0\)

\(\Leftrightarrow\left(10x-5-3x-3\right)\left(10x-5+3x+3\right)=0\)

\(\Leftrightarrow\left(7x-8\right)\left(13x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}7x-8=0\\13x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}7x=8\\13x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{8}{7}\\x=\frac{2}{13}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{8}{7};\frac{2}{13}\right\}\)

13 tháng 9 2020

a) x4 - 16x2 = 0

<=> ( x2 )2 - ( 4x )2 = 0

<=> ( x2 - 4x )( x2 + 4x ) = 0

<=> [ x( x - 4 ) ][ x( x + 4 ) ] = 0

<=> x( x - 4 )x( x + 4 ) = 0

<=> x2( x - 4 )( x + 4 ) = 0

<=> \(\hept{\begin{cases}x^2=0\\x-4=0\\x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}\)( thay bằng dấu hoặc hộ mình nhé )

b) 9x2 + 6x + 1 = 0

<=> ( 3x )2 + 2.3x.1 + 12 = 0

<=> ( 3x + 1 )2 = 0

<=> 3x + 1 = 0

<=> 3x = -1

<=> x = -1/3

c) x2 - 6x = 16

<=> x2 - 6x - 16 = 0

<=> x2 + 2x - 8x - 16 = 0

<=> x( x + 2 ) - 8( x + 2 ) = 0

<=> ( x + 2 )( x - 8 ) = 0

<=> \(\orbr{\begin{cases}x+2=0\\x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=8\end{cases}}\)

d) 9x2 + 6x = 80

<=> 9x2 + 6x - 80 = 0

<=> 9x2 + 30x - 24x - 80 = 0

<=> 9x( x + 10/3 ) - 24( x + 10/3 ) = 0

<=> ( x + 10/3 )( 9x - 24 ) = 0

<=> \(\orbr{\begin{cases}x+\frac{10}{3}=0\\9x-24=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{10}{3}\\x=\frac{8}{3}\end{cases}}\)

e) Áp dụng công thức an.bn = ( ab )n ta có :

25( 2x - 1 )2 - 9( x + 1 )2 = 0

<=> 52( 2x - 1 )2 - 32( x + 1 )2 = 0 

<=> [ 5( 2x - 1 ) ]2 - [ 3( x + 1 ) ]2 = 0

<=> ( 10x - 5 )2 - ( 3x + 3 )2 = 0

<=> [ ( 10x - 5 ) - ( 3x + 3 ) ][ ( 10x - 5 ) + ( 3x + 3 ) ] = 0

<=> ( 10x - 5 - 3x - 3 )( 10x - 5 + 3x + 3 ) = 0

<=> ( 7x - 8 )( 13x - 2 ) = 0

<=> \(\orbr{\begin{cases}7x-8=0\\13x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{8}{7}\\x=\frac{2}{13}\end{cases}}\)

16 tháng 9 2020

             Bài làm :

a) x4 - 16x2 = 0

<=> ( x2 )2 - ( 4x )2 = 0

<=> ( x2 - 4x )( x2 + 4x ) = 0

<=> [ x( x - 4 ) ][ x( x + 4 ) ] = 0

<=> x( x - 4 )x( x + 4 ) = 0

<=> x2( x - 4 )( x + 4 ) = 0

 Vậy x=0 hoặc x=±4

b) 9x2 + 6x + 1 = 0

<=> ( 3x )2 + 2.3x.1 + 12 = 0

<=> ( 3x + 1 )2 = 0

<=> 3x + 1 = 0

<=> 3x = -1

<=> x = -1/3

c) x2 - 6x = 16

<=> x2 - 6x - 16 = 0

<=> x2 + 2x - 8x - 16 = 0

<=> x( x + 2 ) - 8( x + 2 ) = 0

<=> ( x + 2 )( x - 8 ) = 0

 \(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=8\end{cases}}\)

d) 9x2 + 6x = 80

<=> 9x2 + 6x - 80 = 0

<=> 9x2 + 30x - 24x - 80 = 0

<=> 9x( x + 10/3 ) - 24( x + 10/3 ) = 0

<=> ( x + 10/3 )( 9x - 24 ) = 0

 \(\Leftrightarrow\orbr{\begin{cases}x+\frac{10}{3}=0\\9x-24=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{10}{3}\\x=\frac{8}{3}\end{cases}}\)

e) 25( 2x - 1 )2 - 9( x + 1 )2 = 0

<=> 52( 2x - 1 )2 - 32( x + 1 )2 = 0 

<=> [ 5( 2x - 1 ) ]2 - [ 3( x + 1 ) ]2 = 0

<=> ( 10x - 5 )2 - ( 3x + 3 )2 = 0

<=> [ ( 10x - 5 ) - ( 3x + 3 ) ][ ( 10x - 5 ) + ( 3x + 3 ) ] = 0

<=> ( 10x - 5 - 3x - 3 )( 10x - 5 + 3x + 3 ) = 0

<=> ( 7x - 8 )( 13x - 2 ) = 0

 \(\Leftrightarrow\orbr{\begin{cases}7x-8=0\\13x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{8}{7}\\x=\frac{2}{13}\end{cases}}\)

13 tháng 9 2020

a) Ta có : x4 - 16x2 = 0

=> x4 - 8x2 - 8x2 + 64 = 64

=> x2(x2 - 8) - 8(x2 - 8) = 64

=> (x2 - 8)2 = 64

=> \(\orbr{\begin{cases}x^2-8=8\\x^2-8=-8\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=16\\x^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\pm4\\x=0\end{cases}}\Rightarrow x\in\left\{4;-4;0\right\}\)

b) Ta có 9x2 + 6x + 1 = 0

=> 9x2 + 3x + 3x + 1 = 0

=> 3x(3x + 1) + (3x + 1) = 0

=> (3x + 1)2 = 0

=> 3x + 1 = 0

=> x = -1/3

c) Ta có x2 - 6x = 16

=> x2 - 6x + 9 = 25

=> (x - 3)2 = 25

=> \(\orbr{\begin{cases}x-3=5\\x-3=-5\end{cases}}\Rightarrow\orbr{\begin{cases}x=8\\x=-2\end{cases}}\Rightarrow x\in\left\{8;-2\right\}\)

d) 9x2 + 6x = 80

=> 9x2 + 6x + 1 = 81

=> (3x + 1)2 = 81

=> \(\orbr{\begin{cases}3x+1=9\\3x+1=-9\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{8}{3}\\x=-\frac{10}{3}\end{cases}\Rightarrow x\in}\left\{\frac{8}{3};\frac{-10}{3}\right\}\)

e) 25(2x - 1)2 - 9(x + 1)2 = 0

=> [5(2x - 1)]2 - [3(x + 1)]2 = 0

=> (10x - 5)2 - (3x + 3)2 = 0

=> (10x - 5 - 3x - 3)(10x - 5 + 3x + 3) = 0

=> (7x - 8)(13x - 2) = 0

=> \(\orbr{\begin{cases}7x=8\\13x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{8}{7}\\x=\frac{2}{13}\end{cases}}\)

27 tháng 9 2021

ko bt lm:)

8 tháng 8 2016

d) <=>x2-5x-x+5=0

<=>x(x-5)-(x-5)=0

<=>(x-5)(x-1)=0

<=>x=5 hoặc x=1

9 tháng 8 2016

thank nha

21 tháng 8 2021

undefinedMình trình bày trong hình ^^ Bn tham khảo nhé

d: Ta có: \(9x^2+6x-8=0\)

\(\Leftrightarrow9x^2+12x-6x-8=0\)

\(\Leftrightarrow\left(3x+4\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\)

e: Ta có: \(x\left(x-2\right)+x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

f: Ta có: \(5x\left(x-3\right)-x+3=0\)

\(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)