K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 8 2021

Do \(OH\perp AB\Rightarrow H\) là trung điểm AB

\(\Rightarrow AH=\dfrac{1}{2}AB=8\left(cm\right)\)

Áp dụng định lý Pitago cho tam giác vuông ABH:

\(OA=\sqrt{AH^2+OH^2}=10\left(cm\right)\)

Vậy \(R=OA=10\left(cm\right)\)

11 tháng 1 2022

Tại sao R lại bằng OA vậy ạ

 

9 tháng 11 2017

Đường thẳng CD ko cắt đường kính AB=>AB//CD(1)

Từ AH vuông góc vs CD, BK vuông góc vs CD(gt)

=>AH//BK(2)

Từ (1) và (2)=>AHKB là hình bình hành

Nên AB=HK(*)

Lấy O' là trung điểm của Hk

=>OO' là đường trung bình của hình thang AHKB 

=>OO' //AH//BK=>OO' vuông góc vs CD(*)

Từ (*) và(**)=>CO'-HO"=DO'-KO"

Hay CH=DK(đpcm)

9 tháng 11 2017

Gọi I là trung điểm của CD; CD là dây cung của (O) => OI vuông góc với CD

\(AH\perp CD;BK\perp CD\) => OI // AH // BK

Hình thang AHKB có OI // AH // BK; O là trung điểm của AB => I là trung điểm HK => IH = IK

Mà IC = ID (Vì I là trung điểm của CD)

=> IH - IC = IK - ID => CH = DK

=> ĐPCM

a: ΔOAB cân tại O

mà OI là đường trung tuyến

nên OI vuông góc AB

I là trung điểm của AB

=>IA=IB=16/2=8cm

ΔOIA vuông tại I

=>OA^2=OI^2+IA^2

=>OI^2=10^2-8^2=36

=>OI=6(cm)

b: OM=OI+IM

=>6+IM=10

=>IM=4cm

ΔMIA vuông tại I

=>MI^2+IA^2=MA^2

=>\(MA=\sqrt{4^2+8^2}=4\sqrt{5}\left(cm\right)\)

BÀI 1 cho nửa đường tròn tâm o đường kính AB CD là dây bất kì khác AB kẻ AE và BF vuông góc với CD chứng minh CE=DFBÀI 2 cho nữa đường tròn O đường kính AB trên AB lấy hai điểm C và D sao cho OC=OD .từ C và D kẻ hai tia song song nhau cắt nửa đường tròn tại E và F chứng minh EF vuông góc với CE và DFBài 3 cho đường tròn o có bán kính OA =11 cm điểm M thuộc OA và cách o là 7 cm qua M kẻ dây CD có độ...
Đọc tiếp

BÀI 1 cho nửa đường tròn tâm o đường kính AB CD là dây bất kì khác AB kẻ AE và BF vuông góc với CD chứng minh CE=DF

BÀI 2 cho nữa đường tròn O đường kính AB trên AB lấy hai điểm C và D sao cho OC=OD .từ C và D kẻ hai tia song song nhau cắt nửa đường tròn tại E và F chứng minh EF vuông góc với CE và DF

Bài 3 cho đường tròn o có bán kính OA =11 cm điểm M thuộc OA và cách o là 7 cm qua M kẻ dây CD có độ dài 18 cm tính độ dài MC, MD

Bài 4 cho tam giác ABC cân nội tiếp đường tròn O

A chừng minh AO là đường trung trực của BC

B tính đường cao AH của tam giác ABC biết AC=40cm bán kình đường tròn O = 25 cm

Bài 5 cho đường tròn O đường kính AB dây CD vuông góc AB tại điểm M ,M thuộc OA

gọi I là một điểm thuộc OB .Các tia CI ,DI theo thứ tự cắt dường tròn tại E và F

A Cm tam giác ICD cân

gọi H,K theo thứ tự là chân các đường vuông góc kẻ từ O đến CE DF so sánh OH và OK

giúp mình với mình cảm ơn nhiều 

0
13 tháng 5 2019

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Kẻ OJ vuông góc với AB tại J.

Theo quan hệ vuông góc giữa đường kính và dây suy ra: J là trung điểm của AB.

Để học tốt Toán 9 | Giải bài tập Toán 9

Áp dụng định lí Pitago trong tam giác vuông OAJ có:

OJ2 = OA2 – AJ2 = 52 – 42 = 9 (OA = R = 5cm)

=> OJ = 3cm         (1)

Vậy khoảng cách từ tâm O đến dây AB là OJ = 3cm.

b) Kẻ OM vuông góc với CD tại M.

Tứ giác OJIM có: Để học tốt Toán 9 | Giải bài tập Toán 9 nên là hình chữ nhật

Ta có IJ = AJ – AI = 4 – 1 = 3cm

=> OM = IJ = 3cm (Tính chất hình chữ nhật)     (2)

Từ (1), (2) suy ra CD = AB (hai dây cách đều tâm thì bằng nhau). (đpcm)

16 tháng 12 2019

Để học tốt Toán 9 | Giải bài tập Toán 9

Kẻ OM ⊥ CD.

Vì AH // BK (cùng vuông góc HK) nên tứ giác AHKB là hình thang.

Hình thang AHKB có:

    AO = OB (bán kính).

    OM // AH // BK (cùng vuông góc HK)

=> OM là đường trung bình của hình thang.

=> MH = MK         (1)

Vì OM ⊥ CD nên MC = MD     (2)

Từ (1) và (2) suy ra CH = DK. (đpcm)

5 tháng 1 2018

Để học tốt Toán 9 | Giải bài tập Toán 9

Kẻ OM ⊥ CD.

Vì AH // BK (cùng vuông góc HK) nên tứ giác AHKB là hình thang.

Hình thang AHKB có:

    AO = OB (bán kính).

    OM // AH // BK (cùng vuông góc HK)

=> OM là đường trung bình của hình thang.

=> MH = MK         (1)

Vì OM ⊥ CD nên MC = MD     (2)

Từ (1) và (2) suy ra CH = DK. (đpcm)

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB...
Đọc tiếp

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn

2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ           b) CH . HD = HB . HA       c) Biết OH = R/2. Tính diện tích  tam giác ACD theo R

3/ Cho tam giác MAB,  vẽ đường tròn (O) đường kính AB cắt MA ở C,  cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM: 
a) CP = DQ                    b) PD . DQ = PA . BQ và QC . CP = PD . QD                 c) MH vuông góc AB\

4/ Cho đường tròn (O;5cm) đường kính AB,  gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao?                b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O')          d) Tính độ dài đoạn HI

5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?   
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R

6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật

7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)

8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
 

2
18 tháng 9 2016

Cần giải thì liên lạc face 0915694092 nhá

7 tháng 12 2017

giúp tôi trả lời tất cả câu hỏi đề này cái