Cho tam giác ABC có AB=AC ; trên các cạnh AB và AC lấy các điểm D và E sao cho AD=AE. Chứng minh:
a)BE=CD
b) tam giác KBD= tam giác DAE
c) AK là phân giác của góc DAE
d) Gọi M là trung điểm của BC . CM A,K,M thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC và tam giác AED có
\(\hept{\begin{cases}A:gócchung\\\frac{AE}{AB}=\frac{AD}{AC}\left(\frac{8}{20}=\frac{6}{15}\right)\end{cases}}\)
Vậy tam giác ABC đồng dạng với tam giác AED (c-g-c)
easy :>
A B C D E
Ta có : \(\frac{AE}{AB}=\frac{6}{15}=\frac{2}{5} ;\frac{ AD}{AC}=\frac{8}{20}=\frac{2}{5}\)
\(\Rightarrow\frac{AE}{AB}=\frac{AB}{AC}\)
Xét 2 tam giác : ADE và ACB có :
\(\widehat{A}\)chung
\(\frac{AE}{AB}=\frac{AB}{AC}\)
\(\Rightarrow\Delta ADE~\Delta ACB\left(TH2\right)\)
Câu 17: Cho ABC có AB = AC và = 2 có dạng đặc biệt nào:
A. Tam giác cân B. Tam giác đều
C. Tam giác vuông D. Tam giác vuông cân
Câu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:
A. 7cm B. 12,5cm C. 5cm D.
Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại:
A. Đỉnh A B. Đỉnh B C. Đỉnh C D. Tất cả đều sai
Câu 20: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Khẳng định nào sau đây sai?
A. ABM = ACM B. ABM= AMC
C. AMB= AMC= 900 D. AM là tia phân giác CBA
Câu 22: Cho ABC= DEF. Khi đó: .
A. BC = DF B. AC = DF
C. AB = DF D. góc A = góc E
Câu 23. Cho PQR= DEF, DF =5cm. Khi đó:
A. PQ =5cm B. QR= 5cm C. PR= 5cm D.FE= 5cm
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
Bài 1:
a: Xét ΔABC có \(AC^2=AB^2+BC^2\)
nên ΔABC vuông tại B
b: XétΔABC có BC<AB<AC
nên \(\widehat{A}< \widehat{C}< \widehat{B}\)
Ta có hình vẽ:
A B C D E M K a/ Xét tam giác DBC và tam giác EBC có:
BC: cạnh chung
\(\widehat{B}\)=\(\widehat{C}\)(vì tam giác ABC cân có AB = AC)
BD = CE (GT)
=> tam giác DBC = tam giác EBC (c.g.c)
=> BE = CD (2 cạnh tương ứng)
b/ Ta có: \(\widehat{BDC}\)=\(\widehat{CEB}\) (vì tam giác DBC = tam giác EBC) (1)
Ta có: tam giác ABC cân => \(\widehat{B}\)=\(\widehat{C}\)
Mà \(\widehat{EBC}\)=\(\widehat{DCB}\) (vì tam giác DBC = tam giác EBC)
nên \(\widehat{DBK}\)=\(\widehat{ECK}\) (2)
Ta có: BD = CE (GT) (3)
Từ (1),(2),(3) => tam giác KBD = tam giác KCE (g.c.g)
c/ Xét tam giác ABK và tam giác ACK có:
AB = AC (GT)
AK: cạnh chung
Ta có: KD = KE (vì tam giác KBD = tam giác KCE)
Mà BE = CD (câu a)
nên BK = CK
Vậy tam giác ABK = tam giác ACK (c.c.c)
=> \(\widehat{BAK}\)=\(\widehat{CAK}\) (2 góc tương ứng)
=> AK là phân giác \(\widehat{DAE}\) (đpcm)
d/ Xét tam giác ABM và tam giác ACM có:
AB = AC (GT)
AM: cạnh chung
BM = MC (GT)
Vậy tam giác ABM = tam giác ACM (c.c.c)
=> AM cũng là phân giác góc \(\widehat{DAE}\)
Ta có: AK và AM đều là phân giác của \(\widehat{DAE}\)
=> AM trùng AK
hay A,K,M thẳng hàng.
: