trong không gian cho 4 điểm A,B,C,D. Từ các điểm trên ta có thể lập được bao nhiêu vectơ khác vectơ không?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các vectơ khác vectơ – không được lập ra từ 4 điểm đã cho là:
A B → ; A C → ; A D → ; B A → ; B C → ; B D → ; C A → ; C B → ; C D → ; D A → ; D B → ; D C →
Đáp án C
Câu 5:
D. Các vector \(\overrightarrow{AB}, \overrightarrow{BA}, \overrightarrow{AC}, \overrightarrow{CA}, \overrightarrow{BC}, \overrightarrow{CB}\)
Xét tập X = {A, B, C, D, E ; F}. Với mỗi cách chọn hai phần tử của tập X và sắp xếp theo một thứ tự ta được một vectơ thỏa mãn yêu cầu
Mỗi vectơ thỏa mãn yêu cầu tương ứng cho ta một chỉnh hợp chập 2 của 6 phần tử thuộc tập X.
Vậy số các vectơ thỏa mãn yêu cầu bằng số tất cả các chỉnh hợp chập 2 của 6, bằng
Chọn C.
Lời giải:
$\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}, \overrightarrow{AE}$
$\overrightarrow{BA}, \overrightarrow{BC}, \overrightarrow{BD}, \overrightarrow{BE}$
$\overrightarrow{CA}, \overrightarrow{CB}, \overrightarrow{CD}, \overrightarrow{CE}$
$\overrightarrow{DA}, \overrightarrow{DB}, \overrightarrow{DC}, \overrightarrow{DE}$
$\overrightarrow{EA}, \overrightarrow{EB}, \overrightarrow{EC}, \overrightarrow{ED}$
\(1,\) Đa giác có 24 đỉnh \(\Rightarrow\) Đa giác có 24 cạnh
Số đường chéo của đa giác là \(C_{24}^2-24=252\) đường chéo.
\(2,\)
\(a,\) Từ các đỉnh của đa giác, lập được \(252+24=276\) đoạn thẳng.
\(b,\) Từ các đỉnh của đa giác, lập được \(A^2_{24}=552\) vectơ khác vectơ-không.
\(c,\) Từ các đỉnh của đa giác, lập được \(C^3_{24}=2024\) tam giác.
Đáp án D
Với 2 điểm bất kỳ luôn tạo thành 2 vectơ.
Số vectơ được tạo thành: vectơ.
Đáp án B.
Từ 2 điểm phân biệt có thể tạo được 2 vecto nên số vecto tạo ra được là
ta có 4C2.2=12 vecto
12