K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\text{Δ}=2^2-4\cdot2\cdot\dfrac{5}{4}=4-8\cdot\dfrac{5}{4}=4-10=-6< 0\)

Do đó: đa thức P(x) vô nghiệm

12 tháng 4 2017

Chỉ ra 1 nghiệm của đa thức đúng không 

Giả sử d là 1 nghiệm của đa thức thì:

\(\Rightarrow\)f(x) = (x - d)(x2 + mx + n)

= x3 + (m - d)x2 + (n - dm)x - dn = x3+ax2+bx+c

Đồng nhất thức 2 vế ta được

m - d = a; n - dm = b; -dn = c

Thế vào điều kiện đề bài ta được

m - d + 2(n - dm) - 4dn = - 0,5

\(\Leftrightarrow\)2d( 4n + 2m + 1) = (4n + 2m + 1)

\(\Leftrightarrow\)(4n + 2m + 1)(2d - 1) = 0

(Ta không cần quan tâm đến (4n + 2m + 1) vì mục đích ta tìm d thôi)

\(\Rightarrow2d-1=0\)

\(\Leftrightarrow d=\frac{1}{2}\)

Vậy đa thức có 1 nghiệm là \(\frac{1}{2}\) 

12 tháng 4 2017

Dễ mà bạn bấm mình đúng đi rồi mình trả lời cho.Cái này dễ lắm mình học rồi

a:ta có: \(2x^2\ge0\)

\(\Leftrightarrow2x^2+1>0\forall x\)

vậy: H(x) vô nghiệm

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 1:
1. 

$6x^3-2x^2=0$

$2x^2(3x-1)=0$

$\Rightarrow 2x^2=0$ hoặc $3x-1=0$

$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức

2.

$|3x+7|\geq 0$

$|2x^2-2|\geq 0$

Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$

$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý) 

Vậy đa thức vô nghiệm.

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 2:

1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$

Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$

Do đó đa thức vô nghiệm

2.

$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$

$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$

Vậy đa thức khác 0 với mọi $x$

Do đó đa thức không có nghiệm.

23 tháng 6 2020

??

\(\hept{\begin{cases}2x^4\ge0\\x^2\ge0\end{cases}}\)\(\Rightarrow2x^4+x^2\ge0\)\(\Rightarrow2x^4+x^2+2\ge2>0\)

Dấu "=" khi x=0

Vậy đa thức đã cho không có nghiệm

23 tháng 6 2020

2x4 + x2 + 2

Có : \(\hept{\begin{cases}2x^4\ge0\\x^2\ge0\end{cases}\forall x\Rightarrow}2x^4+x^2+2\ge2>0\forall x\)

=> Đa thức vô nghiệm 

24 tháng 12 2018

Bài 2 : phân tích các đa thức sau thành nhân tử

a, x3 - 2x2 + x

\(=x\left(x^2-2x+1\right)\)

\(=x\left(x-1\right)^2\)

b, x2 - 2x - y2 + 1

\(=x^2-2x+1-y^2\)

\(=\left(x-1\right)^2-y^2\)

\(=\left(x-1-y\right)\left(x-1+y\right)\)

24 tháng 12 2018

vt mũ hộ mk đuy bạn :

\(x^3-2x^2+x\)

\(=x^3-x^2-x^2+x\)

\(=\left(x^3-x^2\right)-\left(x^2-x\right)\)

\(=x^2\left(x-1\right)-x\left(x-1\right)\)

\(=\left(x^2-x\right)\left(x-1\right)\)

\(b,x^2-2x-y^2+1\)

\(=\left(x^2-2x+1\right)-y^2\)

\(=\left(x-1\right)^2-y^2\)

\(=\left(x-1+y\right)\left(x-1-y\right)\)

a, Ta có

\(D\left(x\right)=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

vậy...

b,

Ta có

\(x^4\ge0\)

\(\Rightarrow13x^4\ge0\)

\(\Rightarrow13x^4+2\ge2\)

\(\Rightarrow13x^4+2>0\)

\(\Rightarrowđpcm\)

18 tháng 4 2019

a. D(x)=o

tương đương: x(x-2)=0

mà x khác x-2 nên để x(x-2)=o thì 

x=0 hoặc x-2=0

suy ra : x=0 hoặc x=2

vậy nghiệm của đa thức D(x) là 0 hoặc 2

b.ta thấy:

x^4>=0(với mọi x)

nên 13x^4>=0

suy ra 13x^4+2>=2

vậy đa thức P(x) không có nghiệm

16 tháng 3 2016

mặc kệ biến chú tâm vào hệ trong ngoặc rồi mũ nó lên

a)1

b)1

27 tháng 4 2016

bạn bị sai đề rồi

27 tháng 4 2016

dung de ma ban