CÁC BẠN GIỎI TOÁN ƠI GIÚP MÌNH VỚI.
a)C/m rằng đa thức sau ko có nghiệm:
P(x)=2x2+2x+5/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chỉ ra 1 nghiệm của đa thức đúng không
Giả sử d là 1 nghiệm của đa thức thì:
\(\Rightarrow\)f(x) = (x - d)(x2 + mx + n)
= x3 + (m - d)x2 + (n - dm)x - dn = x3+ax2+bx+c
Đồng nhất thức 2 vế ta được
m - d = a; n - dm = b; -dn = c
Thế vào điều kiện đề bài ta được
m - d + 2(n - dm) - 4dn = - 0,5
\(\Leftrightarrow\)2d( 4n + 2m + 1) = (4n + 2m + 1)
\(\Leftrightarrow\)(4n + 2m + 1)(2d - 1) = 0
(Ta không cần quan tâm đến (4n + 2m + 1) vì mục đích ta tìm d thôi)
\(\Rightarrow2d-1=0\)
\(\Leftrightarrow d=\frac{1}{2}\)
Vậy đa thức có 1 nghiệm là \(\frac{1}{2}\)
a:ta có: \(2x^2\ge0\)
\(\Leftrightarrow2x^2+1>0\forall x\)
vậy: H(x) vô nghiệm
Bài 1:
1.
$6x^3-2x^2=0$
$2x^2(3x-1)=0$
$\Rightarrow 2x^2=0$ hoặc $3x-1=0$
$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức
2.
$|3x+7|\geq 0$
$|2x^2-2|\geq 0$
Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$
$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý)
Vậy đa thức vô nghiệm.
Bài 2:
1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$
Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$
Do đó đa thức vô nghiệm
2.
$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$
$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$
Vậy đa thức khác 0 với mọi $x$
Do đó đa thức không có nghiệm.
??
\(\hept{\begin{cases}2x^4\ge0\\x^2\ge0\end{cases}}\)\(\Rightarrow2x^4+x^2\ge0\)\(\Rightarrow2x^4+x^2+2\ge2>0\)
Dấu "=" khi x=0
Vậy đa thức đã cho không có nghiệm
2x4 + x2 + 2
Có : \(\hept{\begin{cases}2x^4\ge0\\x^2\ge0\end{cases}\forall x\Rightarrow}2x^4+x^2+2\ge2>0\forall x\)
=> Đa thức vô nghiệm
Bài 2 : phân tích các đa thức sau thành nhân tử
a, x3 - 2x2 + x
\(=x\left(x^2-2x+1\right)\)
\(=x\left(x-1\right)^2\)
b, x2 - 2x - y2 + 1
\(=x^2-2x+1-y^2\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1-y\right)\left(x-1+y\right)\)
vt mũ hộ mk đuy bạn :
\(x^3-2x^2+x\)
\(=x^3-x^2-x^2+x\)
\(=\left(x^3-x^2\right)-\left(x^2-x\right)\)
\(=x^2\left(x-1\right)-x\left(x-1\right)\)
\(=\left(x^2-x\right)\left(x-1\right)\)
\(b,x^2-2x-y^2+1\)
\(=\left(x^2-2x+1\right)-y^2\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1+y\right)\left(x-1-y\right)\)
a, Ta có
\(D\left(x\right)=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
vậy...
b,
Ta có
\(x^4\ge0\)
\(\Rightarrow13x^4\ge0\)
\(\Rightarrow13x^4+2\ge2\)
\(\Rightarrow13x^4+2>0\)
\(\Rightarrowđpcm\)
a. D(x)=o
tương đương: x(x-2)=0
mà x khác x-2 nên để x(x-2)=o thì
x=0 hoặc x-2=0
suy ra : x=0 hoặc x=2
vậy nghiệm của đa thức D(x) là 0 hoặc 2
b.ta thấy:
x^4>=0(với mọi x)
nên 13x^4>=0
suy ra 13x^4+2>=2
vậy đa thức P(x) không có nghiệm
mặc kệ biến chú tâm vào hệ trong ngoặc rồi mũ nó lên
a)1
b)1
\(\text{Δ}=2^2-4\cdot2\cdot\dfrac{5}{4}=4-8\cdot\dfrac{5}{4}=4-10=-6< 0\)
Do đó: đa thức P(x) vô nghiệm