tính các góc của tam giác abc biết
a) 3 x a = 4 x b và a - b = 20độ
b) b - c = 10độ và c - a = 10 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\widehat{B}+\widehat{C}=90^o\Rightarrow\widehat{B}=90^o-\widehat{C}=90^o-30^o=60^o\)
Mà: \(sinB=sin60^o=\dfrac{AC}{BC}\Rightarrow AC=sin60^o\cdot BC=\dfrac{\sqrt{3}}{2}\cdot8=4\sqrt{3}\left(cm\right)\)
Áp dụng định lý Py-ta-go ta có:
\(AB=\sqrt{BC^2-AC^2}=\sqrt{8^2-\left(4\sqrt{3}\right)^2}=4\left(cm\right)\)
b) Ta có:
\(cosB=cos60^o=\dfrac{AB}{BC}\Rightarrow BC=\dfrac{AB}{cos60^o}=\dfrac{10}{cos60^o}=\dfrac{10}{\dfrac{1}{2}}=20\left(cm\right)\)
Áp dụng định lý Py-ta-go ta có:
\(AC=\sqrt{BC^2-AB^2}=\sqrt{20^2-10^2}=10\sqrt{3}\left(cm\right)\)
a) Có: 3 . \(\widehat{A}\) = 4 . \(\widehat{B}\)
=> \(\frac{\widehat{A}}{4}\) = \(\frac{\widehat{B}}{3}\) và \(\widehat{A}-\widehat{B}=20^o\)
Áp dugj tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{\widehat{A}}{4}\) = \(\frac{\widehat{B}}{3}\) = \(\frac{\widehat{A}-\widehat{B}}{4-3}\) = \(\frac{20}{1}\) = 20
\(\Rightarrow\) \(\left[\begin{array}{nghiempt}\widehat{A}=20.4\\\widehat{B}=20.3\\\widehat{C}=180-\left(20.4+20.3\right)\end{array}\right.\) \(\Rightarrow\) \(\left[\begin{array}{nghiempt}\widehat{A}=80^o\\\widehat{B}=60^o\\\widehat{C}=40^o\end{array}\right.\)
Vậy 3 góc của ΔABC lần lượt có số đo là: 80o ; 60o; 40o