Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(\left(a+b+c\right):\left(a+b-c\right)=\left(a-b+c\right):\left(a-b-c\right)\)
\(\Rightarrow\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)-\left(a-b+c\right)}{\left(a+b-c\right)-\left(a-b-c\right)}\)
\(=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)
\(\Rightarrow a+b+c=a+b-c\)\(\Rightarrow\left(a+b+c\right)-\left(a+b-c\right)=0\)
\(\Rightarrow a+b+c-a-b+c=0\)\(\Rightarrow2c=0\)\(\Rightarrow c=0\)( đpcm )
Bài 1:
2bd=c(b+d)
=>d(a+c)=c(b+d)
=>ad+cd=cb+cd
=>ad=cb
=>a/b=c/d
\(a+b+c=0\)
\(\Rightarrow\)\(\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)
\(M=a\left(a+b\right)\left(a+c\right)=a.\left(-c\right).\left(-b\right)=abc\)
\(N=b\left(b+c\right)\left(a+b\right)=b.\left(-a\right).\left(-c\right)=abc\)
\(P=c\left(b+c\right)\left(a+c\right)=c.\left(-a\right).\left(-b\right)=abc\)
\(\Rightarrow\)\(M=N=P\)
\(a\left(a+b\right)\left(a+c\right)=b\left(b+c\right)\left(b+a\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a^2+ac-b^2-bc\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[\left(a+b\right)\left(a-b\right)+c\left(a-b\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)\left(a+b+c\right)=0\)
=>a+b+c=0
Ta có: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)
\(\Rightarrow\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)+\left(a+b+c\right)=a+b+c\)
\(\Rightarrow\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)=0\)(đpcm)
a+b+c=0
\(\Rightarrow\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}\)
thay vào A ta có:
A=a(a+b)(a+c)
= a.(-c).(-b)=abc(1)
B= c(a+c)(b+c)
=c.(-b)(-a)=abc(2)
từ (1)(2)=> abc=abc=> A=B(đfcm)