giải pt
\(a+b+c+11=2\sqrt{a}+4\sqrt{b-1}+6\sqrt{c-2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b+c+11=2\sqrt{a}+4\sqrt{b-1}+6\sqrt{c-2}\)
\(\Leftrightarrow\left(a-2\sqrt{a}+1\right)+\left(\left(b-1\right)-4\sqrt{b-1}+4\right)+\left(\left(c-2\right)-6\sqrt{c-2}+9\right)=0\)
\(\Leftrightarrow\left(\sqrt{a}-1\right)^2+\left(\sqrt{b-1}-2\right)^2+\left(\sqrt{c-2}-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{a}=1\\\sqrt{b-1}=2\\\sqrt{c-2}=3\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1\\b=5\\c=11\end{cases}}\)
Đk: \(\left\{{}\begin{matrix}a\ge0\\b\ge1\\c\ge2\end{matrix}\right.\)
pt đã cho \(\Leftrightarrow\left(a-2\sqrt{a}+1\right)+\left(b-1-4\sqrt{b-1}+4\right)+\left(c-2-6\sqrt{c-2}+9\right)=0\)
\(\Leftrightarrow\left(\sqrt{a}-1\right)^2+\left(\sqrt{b-1}-2\right)^2+\left(\sqrt{c-2}-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{a}-1=0\\\sqrt{b-1}-2=0\\\sqrt{c-2}-3=0\end{matrix}\right.\)
(bạn tự làm tiếp nhé, nhớ ghi kết luận nha)
ĐKXĐ \(a\ge0;b\ge1;c\ge2\)
Ta có (a - 2\(\sqrt{a}\) +1) + [ (b - 1) - 4\(\sqrt{b-1}\) + 4 ] + [(c - 2 ) - 6\(\sqrt{c-2}\) +9 ] =0
<=> (\(\sqrt{a}\) - 1) + (\(\sqrt{b-1}\) - 2 ) + ( \(\sqrt{c-2}\) - 3 ) =0
<=>\(\left[{}\begin{matrix}\sqrt{a}-1=0\\\sqrt{b-1}-1=0\\\sqrt{c-2}-3=0\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}a=1\\b=5\\c=11\end{matrix}\right.\)
Vậy .........
a,\(\sqrt{x+6-4\sqrt{x+2}}+\sqrt{x+11-6\sqrt{x+2}}=1\) (*)(đk \(x\ge-2\))
<=> \(\sqrt{\left(x+2\right)-4\sqrt{x+2}+4}+\sqrt{\left(x+2\right)-6\sqrt{x+2}+9}\)=1
<=> \(\sqrt{\left(\sqrt{x+2}-2\right)^2}+\sqrt{\left(\sqrt{x+2}-3\right)^2}=1\)
<=> \(\left|\sqrt{x+2}-2\right|+\left|\sqrt{x+2}-3\right|\)=1 (1)
TH1: \(0\le\sqrt{x+2}< 2\)
Từ (1) =>\(2-\sqrt{x+2}+3-\sqrt{x+2}=1\)
<=> \(5-2\sqrt{x+2}=1\) <=> \(2\sqrt{x+1}=4\) <=> \(\sqrt{x+1}=2\)
<=> \(x+1=4\) <=> x=3(không t/m \(\sqrt{x+2}\le2\))
TH2 : \(2\le\sqrt{x+2}\le3\)
Từ (1) =>\(\sqrt{x+2}-2+3-\sqrt{x+2}=1\)
<=> \(1=1\) (luôn đúng)
Từ TH2 <=> 4\(\le x+2\le9\) <=> \(2\le x\le7\)
TH3 \(\sqrt{x+2}>3\)
Từ (1) => \(\sqrt{x+2}-2+\sqrt{x+2}-3=1\)
<=> \(2\sqrt{x+2}=6\) <=> \(\sqrt{x+2}=3\) <=> \(x+2=9\) <=> x=7 (không t/m \(\sqrt{x+2}>3\))
Vậy pt (*) có tập nghiệm S=\(\left\{2\le x\le7\right\}\)
b, \(x^2-10x+27=\sqrt{6-x}+\sqrt{x-4}\) (*) (đk :\(4\le x\le6\))
Vs a,b \(\ge0\) ta có \(\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a^2+b^2\right)}\)(tự CM nha)
Dấu "=" xảy ra <=> a=b
Áp dụng bđt trên ta có: \(\sqrt{6-x}+\sqrt{x-4}\le\sqrt{2\left(6-x+x-4\right)}=\sqrt{2.2}=2\)
<=> \(\sqrt{6-x}+\sqrt{x-4}\le2\)(1)
Lại có: \(x^2-10x+27=x^2-10x+25+2=\left(x-5\right)^2+2\ge2\)
<=> \(x^2-10x+27\ge2\) (2)
Từ (1),(2) => Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}6-x=x-4\\x-5=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}6+4=2x\\x=5\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=5\\x=5\end{matrix}\right.\left(tm\right)\)
Vậy pt (*) có tập nghiệm S=\(\left\{5\right\}\)
c, \(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\)(*) (đk: x\(\ge0\))
<=> \(x\left(x-2\right)-\sqrt{x}\left(x-2\right)-4\left(\sqrt{x}-1\right)=0\)
<=> \(\left(x-\sqrt{x}\right)\left(x-2\right)-4\left(\sqrt{x}-1\right)=0\)
<=> \(\sqrt{x}\left(\sqrt{x}-1\right)\left(x-2\right)-4\left(\sqrt{x}-1\right)=0\)
<=> \(\left(\sqrt{x}-1\right)\left[\sqrt{x}\left(x-2\right)-4\right]=0\)
<=> \(\left[{}\begin{matrix}\sqrt{x}-1=0\\\sqrt{x}\left(x-2\right)-4=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}\left(x-2\right)=4\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\\x\left(x-2\right)^2=16\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=1\\x\left(x^2-4x+4\right)-16=0\end{matrix}\right.\) <=>\(\left[{}\begin{matrix}x=1\\x^3-4x^2+4x-16=0\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x=1\\x^2\left(x-4\right)+4\left(x-4\right)=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=1\\\left(x^2+4\right)\left(x-4\right)=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\\x-4=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\left(tm\right)\)
Vậy pt (*) có tập nghiệm S=\(\left\{1;4\right\}\)
d) x2+3x+1=(x+3)\(\sqrt{x^2+1}\)
<=>(\(\sqrt{x^2+1}-3x+3\sqrt{x^2+1}-\left(x^2+1\right)=0\)
<=>\(\left(\sqrt{x^2+1}-3\right)\left(x-\sqrt{x^2+1}\right)=0\)
<=>\(\sqrt{x^2+1}=3\) hoặc \(x=\sqrt{x^2+1}\)
=>x=\(2\sqrt{2}\)
\(1a.Để:A=\dfrac{x}{x-2}+\sqrt{x-2}\) xác định thì :
\(\left\{{}\begin{matrix}x-2\ne0\\x-2\ge0\end{matrix}\right.\) \(\Leftrightarrow\) \(x>2\)
\(1b.Taco:B=\sqrt{-x^2+2x-1}=-\sqrt{\left(x-1\right)^2}\)
\(Để:B=\sqrt{-x^2+2x-1}=-\sqrt{\left(x-1\right)^2}\) xác định thì :
\(\left(x-1\right)^2\ge0\) ( luôn đúng )
KL.................
\(2.\sqrt{9x^2+6x+1}=\sqrt{11-6\sqrt{2}}\)
\(\Leftrightarrow\sqrt{\left(3x+1\right)^2}=\sqrt{9-2.3\sqrt{2}+2}=\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(\Leftrightarrow|3x+1|=|3-\sqrt{2}|=3-\sqrt{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=3-\sqrt{2}\\3x+1=\sqrt{2}-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2-\sqrt{2}}{3}\\x=\dfrac{\sqrt{2}-4}{3}\end{matrix}\right.\)
KL.............
\(3a.\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-2.2\sqrt{5}.3+9}}}=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}=\sqrt{\sqrt{5}-\sqrt{3-|2\sqrt{5}-3|}}=\sqrt{\sqrt{5}-\sqrt{5-2\sqrt{5}+1}}=\sqrt{\sqrt{5}-|\sqrt{5}-1|}=\sqrt{1}=1\)
\(3b.\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+\sqrt{8+2.2\sqrt{2}+1}}}=\sqrt{13+30\sqrt{2+|2\sqrt{2}+1|}}=\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}=\sqrt{13+30|\sqrt{2}+1|}=\sqrt{43+30\sqrt{2}}=\sqrt{18+2.3\sqrt{2}.5+25}=\sqrt{\left(3\sqrt{2}+5\right)^2}=|3\sqrt{2}+5|=3\sqrt{2}+5\)
pt\(\Leftrightarrow a-2\sqrt{a}+1+b-1-4\sqrt{b-1}+4+c-2-6\sqrt{c-2}+9=0\)(dk\(a\ge0,b\ge1,c\ge2\)
\(\Leftrightarrow\left(\sqrt{a}-1\right)^2+\left(\sqrt{b-1}-2\right)^2+\left(\sqrt{c-2}-3\right)^2=0\)
\(\Leftrightarrow\begin{cases}\sqrt{a}-1=0\\\sqrt{b-1}-2=0\\\sqrt{c-2}-3=0\end{cases}\)\(\Leftrightarrow\begin{cases}\sqrt{a}=1\\\sqrt{b-1}=2\\\sqrt{c-2}=3\end{cases}\)
tự giải tiếp bạn nhé