K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMDC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

b: Xét ΔEMB vuông tại E và ΔFMC vuông tại F có

MB=MC

\(\widehat{EMB}=\widehat{FMC}\)(hai góc đối đỉnh)

Do đó: ΔEMB=ΔFMC

=>EM=FM

=>M là trung điểm của EF

29 tháng 12 2023

a: Xét ΔMAC và ΔMDB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB

Do đó: ΔMAC=ΔMDB

b: Xét ΔMEB và ΔMFC có

ME=MF

\(\widehat{BME}=\widehat{CMF}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMEB=ΔMFC

=>\(\widehat{MEB}=\widehat{MFC}\)

=>\(\widehat{MFC}=90^0\)

=>CF\(\perp\)AD

c: Xét tứ giác BFCE có

M là trung điểm chung của BC và FE

=>BFCE là hình bình hành

=>BF//CE và BF=CE

Ta có: BF//CE

B\(\in\)FG

Do đó: BG//CE

Ta có: BF=CE

BF=BG

Do đó: BG=CE
Xét tứ giác BGEC có

BG//EC

BG=EC

Do đó: BGEC là hình bình hành

=>BE cắt GC tại trung điểm của mỗi đường

mà H là trung điểm của BE

nên H là trung điểm của GC

=>G,H,C thẳng hàng

31 tháng 1 2020

a,vì M là trung điểm của BC (gt)

=>MB=MC

Xét tam giác ABM và tam giác DCM, có:

MB=MC(cmt)

^AMB=^DMC(đối đỉnh)

MA=MD

=> tam giác ABM = tamgiác DCM

b, vì tam giác ABM = tam giác DCM (cmt)

=> ^BAM=^CDM(2 góc t/ư)

Mà 2 góc này ở VT SLT

=> AB//CD

c, Vì AH vuống góc vs BC(gt)

=> AHM=90

Vì DK vuông góc vs BC(gt)

=> DKM=90

Xét tam giác AHM và tam giác KDM,có: 

^AHM=^DKM(=90)

MA=MD(Gt)

AMH=^DMK(đối đỉnh)

=> tam giác AHM= tam giác DKM( cạnh huyền - góc nhọn)

=> MH = MK ( 2 cạnh t/ư)

=> M là trung điểm của HK

học tốt >.<