BT1: Chứng Minh:
a) 1980a - 1995b \(⋮\) 3 và 5 với a , b \(\in\) N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) a(a+1)(a+2)
+) Giả sử a là số lẻ
=> a+1 là số chẵn và chia hết cho 2 => a(a+1)(a+2) chia hết cho 2
+) Giả sử a là số chẵn
=> a chia hết cho 2 => a(a+1)(a+2) chia hết cho 2
Vậy a(a+1)(a+2) chia hết cho 2 với mọi a thuộc N (1)
+) Giả sử a không chia hết cho 3 nên a chia 3 dư 1 hoặc dư 2
Nếu a chia 3 dư 1 thì a+2 chia hết cho 3 => a(a+1)(a+2) chia hết cho 3
Nếu a chia 3 dư 2 thì a+1 chia hết cho 3 => a(a+1)(a+2) chia hết cho 3
Vậy a(a+1)(a+2) chia hết cho 3 với mọi a thuộc N (2)
Từ (1) và (2) => a(a+1)(a+2) chia hết cho 2 và 3 với mọi a thuộc N
_HT_
a) 1980a - 1995b
Ta có: 1980a luôn có chữ số tận cùng là 0 vì 0 nhân với số nào cũng đều có chữ số tận cùng là 0
1995b sẽ có chữ số tận cùng là 0 nếu b là số chẵn và ngược lại, 1995b sẽ có chữ số tận cùng là 5 nếu b là số lẻ
Từ đó => 1980a-1995b có tận cùng là : 0-5 = 5 hoặc 0-0= 0
Mà số có chữ số tận cùng là 0 hoặc 5 thì đều chia hết cho 5
Vậy 1980a-1995b chia hết cho 5 với mọi a,b thuộc N (1)
Ta có: 1980 chia hết cho 3 => 1980a cũng chia hết cho 3 với mọi a
1995 chia hết cho 3 => 1995b cũng chia hết cho 3 với mọi b
Vậy 1980a-1995b chia hết cho 3 với mọi a,b thuộc N (2)
Từ (1) và (2) => 1980a-1995b chia hết cho 3 và 5 với mọi a,b thuộc N
=> ĐPCM
_HT_
a)Do 1980a chia hết cho cả 3 và 5
1995b cũng chia hết cho cả 3 và 5
Vậy 1980a-1995b chia hết cho cả 3 và 5
b)Do a;a+1;a+2 là 3 số tự nhiên liên tiếp
có số chia hết cho 2 hoặc 3
vậy a(a+1)(a+2)chia hết cho 2 và 3
1980a+1995b=15.132a + 15.133b=15(132a+133b) luôn chia hết cho 15
=> 1980a+1995b chia hết cho 15 với mọi a, b
1a,Ta có Nếu n chia 5 dư 4,1\(\Rightarrow\) n2chia 5 dư 4
\(\Rightarrow\) n2+a \(⋮\)5 \(\Rightarrow\)A\(⋮\) 5
Nếu n chia 5 dư 2 ,3 \(\Rightarrow\)n2 chia 5 dư 1
\(\Rightarrow\)n2 +1 \(⋮\)5
Nếu n \(⋮\)5 \(\Rightarrow\)A\(⋮\)5
Câu b mình sẽ nhắn tin cho bn nha
Ta có: \(\left[\begin{array}{nghiempt}1980a⋮3\\1995b⋮3\end{array}\right.\) \(\Rightarrow1980a-1995b⋮3\)
Tương tự \(\left[\begin{array}{nghiempt}1980a⋮5\\1995b⋮5\end{array}\right.\) \(\Rightarrow1980a-1995b⋮5\)