tìm k, m thuộc N sao cho: (k + m) (k - m) = 2016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\vec{AN}=\vec{AM}+\vec{MN}\)
\(=\dfrac{2}{3}\vec{AC}+\dfrac{1}{4}\vec{MB}\)
\(=\dfrac{2}{3}\vec{AC}+\dfrac{1}{4}\left(\vec{AB}-\vec{AM}\right)\)
\(=\dfrac{1}{4}\vec{AB}+\dfrac{1}{2}\vec{AC}\)
\(\vec{AP}=\vec{AC}+\vec{CP}\)
\(=\vec{AC}+\dfrac{1}{k+1}\vec{CB}\)
\(=\vec{AC}+\dfrac{1}{k+1}\left(\vec{AB}-\vec{AC}\right)\)
\(=\dfrac{1}{k+1}\vec{AB}+\dfrac{k}{k+1}\vec{AC}\)
A, N, P thẳng hàng khi:
\(\dfrac{\dfrac{k}{k+1}}{\dfrac{1}{k+1}}=\dfrac{\dfrac{1}{2}}{\dfrac{1}{4}}\Leftrightarrow k=2\)
Kết luận: \(k=2\)
M là trung điểm BC \(\Rightarrow\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)
\(\overrightarrow{IM}=2\overrightarrow{AI}\Rightarrow\overrightarrow{IA}+\overrightarrow{AM}=2\overrightarrow{AI}\)
\(\Rightarrow-\overrightarrow{AI}+\overrightarrow{AM}=2\overrightarrow{AI}\)
\(\Rightarrow\overrightarrow{AI}=\dfrac{1}{3}\overrightarrow{AM}=\dfrac{1}{3}\left(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\right)=\dfrac{1}{6}\overrightarrow{AB}+\dfrac{1}{6}\overrightarrow{AC}\)
\(\overrightarrow{BI}=\overrightarrow{BA}+\overrightarrow{AI}=-\overrightarrow{AB}+\dfrac{1}{6}\overrightarrow{AB}+\dfrac{1}{6}\overrightarrow{AC}=-\dfrac{5}{6}\overrightarrow{AB}+\dfrac{1}{6}\overrightarrow{AC}\)
Đặt \(\overrightarrow{AK}=x.\overrightarrow{AC}\)
\(\overrightarrow{BK}=\overrightarrow{BA}+\overrightarrow{AK}=-\overrightarrow{AB}+x.\overrightarrow{AC}\)
Do B, I, K thẳng hàng \(\Rightarrow\overrightarrow{BK}\) và \(BI\) cùng phương
\(\Rightarrow\dfrac{-1}{\left(-\dfrac{5}{6}\right)}=\dfrac{x}{\left(\dfrac{1}{6}\right)}\Rightarrow x=\dfrac{1}{5}\)
\(\Rightarrow\overrightarrow{AK}=\dfrac{1}{5}\overrightarrow{AC}=\dfrac{1}{5}\left(\overrightarrow{AK}+\overrightarrow{KC}\right)=\dfrac{1}{5}\overrightarrow{AK}+\dfrac{1}{5}\overrightarrow{KC}\)
\(\Rightarrow\dfrac{4}{5}\overrightarrow{AK}=\dfrac{1}{5}\overrightarrow{KC}\)
\(\Rightarrow4.\overrightarrow{AK}=1.\overrightarrow{KC}\Rightarrow4.\overrightarrow{KA}=1.\overrightarrow{CK}\)
\(\Rightarrow\left\{{}\begin{matrix}n=4\\m=1\end{matrix}\right.\)
Các kí hiệu em ghi như IM=2AI và nKA=mCK nó là đoạn thẳng hay có vecto?