Tìm điều kiện của số nguyên x để phân số sau có giá trị là một số nguyên: 3x-1/x+2 Giúp mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,ĐK:x^2-1=\left(x-1\right)\left(x+1\right)\ne0\Leftrightarrow x\ne\pm1\\ \dfrac{3x+3}{x^2-1}=\dfrac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{3}{x-1}=2\\ \Leftrightarrow x-1=\dfrac{3}{2}\Leftrightarrow x=\dfrac{5}{2}\left(tm\right)\\ b,\dfrac{3}{x-1}\in Z\\ \Leftrightarrow x-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{-2;0;2;4\right\}\left(tm\right)\)
a) n thuộc Z
b) Vì 1/2 ko thc Z mà n thc Z => ko có gtrị nao của n thc Z để A là số nguyên
phân thức được xác định ⇔ x2 - 1 ≠ 0 ⇔ x ≠ \(\left\{-1;1\right\}\)
\(\dfrac{3x+3}{x^2-1}=-2\)
=> 3x + 3 = -2x2 + 2
=> 2x2 + 3x + 1 = 0
=> (2x+1)(x+1) = 0
=> x = -1/2 (thỏa mãn) hoặc x = -1 (loại)
Vậy, để phân thức có giá trị bằng –2 thì x = -1/2.
\(\dfrac{3x+3}{x^2-1}\)=\(\dfrac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\) (x khác -1 và x khác 1)
= \(\dfrac{3}{x-1}\)
=> Phân thức ban đầu có giá trị nguyên ⇔ 3 chia hết cho x-1
=> x-1 ∈\(\left\{-3;-1;1;3\right\}\)
=> x ∈\(\left\{-2;0;2;4\right\}\)
Vậy, để phân thức có giá trị là số nguyên.thì x ∈\(\left\{-2;0;2;4\right\}\).
a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b) Ta có: \(\dfrac{3x+3}{x^2-1}\)
\(=\dfrac{3\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{3}{x-1}\)
Để phân thức có giá trị bằng -2 thì \(\dfrac{3}{x-1}=-2\)
\(\Leftrightarrow x-1=\dfrac{-3}{2}\)
hay \(x=-\dfrac{1}{2}\)
Vậy: Để phân thức có giá trị bằng -2 thì \(x=-\dfrac{1}{2}\)
c) Để phân thức có giá trị là số nguyên thì \(3⋮x-1\)
\(\Leftrightarrow x-1\inƯ\left(3\right)\)
\(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow x\in\left\{2;0;4;-2\right\}\)
Kết hợp ĐKXĐ, ta được:
\(x\in\left\{2;0;4;-2\right\}\)
Vậy: Để phân thức có giá trị là số nguyên thì \(x\in\left\{2;0;4;-2\right\}\)
a) A là phân số <=>2n-4\(\ne0\)
<=>2n\(\ne\)4
<=>n\(\ne\)2
b)Với n\(\ne2\)
A=\(A=\dfrac{-4n+2}{2n-4}=\dfrac{-4n+8-6}{2n-4}=\dfrac{-2\left(2n-4\right)-6}{2n-4}=-2+\dfrac{-6}{2n-4}\)
A có giá trị nguyên <=>-6 chia hết cho 2n-4
<=>2n-4 là ước của -6
<=>2n-4\(\varepsilon\){-6;-3;-2;-1;1;2;3;6}
2n-4 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
2n | -2 | 1 | 2 | 3 | 5 | 6 | 7 | 10 |
n | -1 | 0.5 | 1 | 1.5 | 2.5 | 3 | 3.5 | 5 |
TM | KTM | TM | KTM | KTM | TM | KTM | TM |
Lời giải:
Với $x$ nguyên, để $\frac{3x-1}{x+2}$ nguyên thì $3x-1\vdots x+2$
$\Leftrightarrow 3(x+2)-7\vdots x+2$
$\Leftrightarrow 7\vdots x+2$
$\Leftrightarrow x+2\in\left\{\pm 1;\pm 7\right\}$
$\Rightarrow x\in\left\{-1;-3; -9; 5\right\}$