5^3(3x+2):13=10^3:(13^5:13^4)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^3.\left(3x+2\right):13=10^3:\left(13^5:13^4\right)\)
\(125.\left(3x+2\right):13=1000:13\)
\(125.\left(3x+2\right)=1000\)
\(3x+2=1000:125\)
\(3x+2=8\)
\(3x=6\)
\(x=2\)
Hok tốt nha^^
=>53.(3x+2):13=103: 13
=>53.(3x+2)=103
=>(3x+2)=53
=>3x+2=5
=>3x=3
=>x=3:3
=>x=1
\(1,-\dfrac{4}{7}+\dfrac{2}{3}\times\dfrac{-9}{14}\)
\(=\dfrac{-4}{7}+\dfrac{-18}{42}\)
\(=\dfrac{-4\times6}{7\times6}+\dfrac{-18}{42}\)
\(=\dfrac{-20}{42}+\dfrac{-18}{42}\)
\(=-\dfrac{38}{42}\)
\(=-\dfrac{19}{21}\)
\(2,\dfrac{17}{13}-\left(\dfrac{4}{13}-11\right)\)
\(=\dfrac{17}{13}-\dfrac{4}{13}+11\)
\(=\dfrac{13}{13}+11\)
\(=1+11\)
\(=12\)
\(3,8\dfrac{2}{7}-\left(3\dfrac{4}{9}+4\dfrac{2}{7}\right)\)
\(=\dfrac{58}{7}-\left(\dfrac{31}{9}+\dfrac{30}{7}\right)\)
\(=\dfrac{58}{7}-\dfrac{31}{9}-\dfrac{30}{7}\)
\(=\dfrac{58}{7}-\dfrac{30}{7}-\dfrac{31}{9}\)
\(=\dfrac{28}{7}-\dfrac{31}{9}\)
\(=\dfrac{28\times9}{7\times9}-\dfrac{31\times7}{9\times7}\)
\(=\dfrac{252}{63}-\dfrac{217}{63}\)
\(=\dfrac{35}{63}\)
\(=\dfrac{5}{9}\)
\(5,\left(\dfrac{2}{3}-1\dfrac{1}{2}\right):\dfrac{4}{3}+\dfrac{1}{2}\)
\(=\left(\dfrac{2}{3}-\dfrac{3}{2}\right):\dfrac{4}{3}+\dfrac{1}{2}\)
\(=\left(\dfrac{2\times2}{3\times2}-\dfrac{3\times3}{2\times3}\right):\dfrac{4}{3}+\dfrac{1}{2}\)
\(=\left(\dfrac{4}{6}-\dfrac{9}{6}\right):\dfrac{4}{3}+\dfrac{1}{2}\)
\(=\dfrac{-5}{6}:\dfrac{4}{3}+\dfrac{1}{2}\)
\(=\dfrac{-5}{6}\times\dfrac{3}{4}+\dfrac{1}{2}\)
\(=\dfrac{-15}{24}+\dfrac{1}{2}\)
\(=\dfrac{-15}{24}+\dfrac{1\times12}{2\times12}\)
\(=\dfrac{-15}{24}+\dfrac{12}{24}\)
\(=\dfrac{-3}{24}\)
\(=-\dfrac{1}{8}\)
\(6,\dfrac{-5}{13}+\dfrac{2}{5}+\dfrac{-8}{13}+\dfrac{3}{5}-\dfrac{3}{7}\)
\(=\left(\dfrac{-5}{13}+\dfrac{-8}{13}\right)+\left(\dfrac{2}{5}+\dfrac{3}{5}\right)-\dfrac{3}{7}\)
\(=\dfrac{-13}{13}+\dfrac{5}{5}-\dfrac{3}{7}\)
\(=-1+1-\dfrac{3}{7}\)
\(=-\dfrac{3}{7}\)
\(7,\dfrac{6}{5}\times\dfrac{3}{7}+\dfrac{6}{5}:\dfrac{7}{10}+\dfrac{6}{5}\)
\(=\dfrac{6}{5}\times\dfrac{3}{7}+\dfrac{6}{5}\times\dfrac{10}{7}+\dfrac{6}{5}\)
\(=\dfrac{6}{5}\times\left(\dfrac{3}{7}+\dfrac{10}{7}+1\right)\)
\(=\dfrac{6}{5}\times\left(\dfrac{3}{7}+\dfrac{10}{7}+\dfrac{1\times7}{1\times7}\right)\)
\(=\dfrac{6}{5}\times\left(\dfrac{3}{7}+\dfrac{10}{7}+\dfrac{7}{7}\right)\)
\(=\dfrac{6}{5}\times\dfrac{20}{7}\)
\(=\dfrac{120}{35}\)
\(=\dfrac{24}{7}\)
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
Bài 1 :
a) \(\frac{12}{21}-\frac{3}{7}+\left(-\frac{2}{3}\right)=\frac{4}{7}-\frac{3}{7}+\left(-\frac{2}{3}\right)=\frac{1}{7}-\frac{2}{3}=-\frac{11}{21}\)
b) \(\left(-\frac{25}{13}\right)+\left(-\frac{9}{17}\right)+\frac{12}{13}+\left(-\frac{25}{17}\right)\)
\(=\left[\left(-\frac{25}{13}\right)+\frac{12}{13}\right]+\left[\left(-\frac{9}{17}\right)+\left(-\frac{25}{17}\right)\right]\)
\(=-1+\left(-2\right)=-1-2=-3\)
c) \(\frac{5}{9}\cdot\frac{7}{13}+\frac{5}{9}\cdot\frac{9}{13}-\frac{5}{9}\cdot\frac{3}{13}=\frac{5}{9}\left(\frac{7}{13}+\frac{9}{13}-\frac{3}{13}\right)=\frac{5}{9}\cdot1=\frac{5}{9}\)
Bài 2 :
a) \(\frac{2}{3}x+\frac{5}{7}=\frac{3}{10}\)
=> \(\frac{2}{3}x=\frac{3}{10}-\frac{5}{7}=-\frac{29}{70}\)
=> \(x=\left(-\frac{29}{70}\right):\frac{2}{3}=\left(-\frac{29}{70}\right)\cdot\frac{3}{2}=-\frac{87}{140}\)
b) \(x:\frac{5}{2}-\frac{1}{2}=-\frac{2}{3}\)
=> \(x:\frac{5}{2}=-\frac{2}{3}+\frac{1}{2}=-\frac{1}{6}\)
=> \(x=\left(-\frac{1}{16}\right)\cdot\frac{5}{2}=-\frac{5}{32}\)
c) Bạn chỉ cần xét hai trường hợp âm và dương thôi :>
a: 2x-3/2+3/4=-4
=>2x-3/4=-4
=>2x=-13/4
hay x=-13/8
b: \(\left(-\dfrac{2}{3}x-\dfrac{3}{5}\right)\cdot\left(\dfrac{-3}{2}-\dfrac{10}{3}\right)=\dfrac{2}{5}\)
\(\Leftrightarrow-\dfrac{2}{3}x-\dfrac{3}{5}=\dfrac{2}{5}:\dfrac{-29}{6}=\dfrac{-2}{5}\cdot\dfrac{6}{29}=\dfrac{-12}{145}\)
=>2/3x+3/5=12/145
=>2/3x=-15/29
hay x=-45/58
c: \(\dfrac{x}{2}-\left(\dfrac{3}{5}x-\dfrac{13}{5}\right)=-\left(\dfrac{7}{10}x+\dfrac{7}{5}\right)\)
=>1/2x-3/5x+13/5=-7/10x-7/5
=>-1/10x+7/10x=-7/5-13/5
=>3/5x=-2
hay x=-2:3/5=-10/3
\(\left[5^3.\left(3x+2\right)\right]:13=5^5:\left(13^5:13^4\right)\)
\(\left[5^3\left(3x+2\right)\right]:13=5^5:13\)
\(\left[5^3\left(3x+2\right)\right]:13=\frac{3125}{13}\)
\(\left[5^3\left(3x+2\right)\right]=3125\)
\(3x+2=3125:5^3\)
\(3x+2=25\)
\(3x=25-2\)
\(3x=23\)
\(x=\frac{23}{3}\)
\(5^3.\left(3x+2\right):13=5^5:\left(13^5:13^4\right)\)
\(5^3.\left(3x+2\right):13=3125:13\)
\(5^3.\left(3x+2\right):13=\frac{3125}{13}\)
125 . ( 3x + 2 ) : 13 =\(\frac{3125}{13}\)
125 . ( 3x + 2 ) =\(\frac{3125}{13}.\frac{13}{1}=3125\)
3x + 2 = 3125 : 125
3x + 2 = 25
3x = 25 -2
3x = 23
x = 23 : 3
x = \(\frac{23}{3}\)
\(\left[5^3\left(3x+2\right)\right]:13=5^5:\left(13^5:13^4\right)\)
\(\left[5^3\left(3x+2\right)\right]:13=5^5:13\)
\(5^3\left(3x+2\right)=5^5:13.13\)
\(5^3\left(3x+2\right)=5^5\)
\(3x+2=5^5:5^3\)
\(3x+2=25\)
\(3x=25-2\)
\(3x=23\)
\(\Rightarrow x=\frac{23}{3}\)
\(5^3\left(3x+2\right)\div13=10^3\div\left(13^5\div13^4\right)\)
\(\Rightarrow125\left(3x+2\right)\div13=1000\div13\)
\(\Rightarrow125\left(3x+2\right)=1000\)
\(\Rightarrow3x+2=1000\div125\)
\(\Rightarrow3x+2=8\)
\(\Rightarrow3x=8-2\)
\(\Rightarrow3x=6\Rightarrow x=6\div3\Rightarrow x=2\)
Vậy : x = 2