K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2016

GTLN của biểu thức khi mẫu số nhỏ nhất mà mẫu số

/x - 1015/ + 2 nhỏ nhất là 2 vì / x-2015/ > hoặc = 0

/x- 2015/ =0 khi x= 2015 thi biểu thức trên có GTLN = 2016/2 = 1008

16 tháng 11 2016

1008

17 tháng 11 2016

Ta có \(\left|x-2015\right|\ge0\)

\(\Rightarrow\left|x-2015\right|+2\ge2\)

\(\Rightarrow\frac{2016}{\left|x-2015\right|+2}\le\frac{2016}{2}=1008\)

\(\Rightarrow GTLN\)của biểu thức là 1008 khi \(\left|x-2015\right|=0\Rightarrow x-2015=0\Rightarrow x=2015\)

Vậy GTLN của \(\frac{2016}{\left|x-2015\right|+2}\)là 1008 khi x=2015

16 tháng 1 2022

Ta có: \(2\left(x-1\right)^2+3\ge3\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

\(\Rightarrow B=\dfrac{1}{2\left(x-1\right)^2+3}\le\dfrac{1}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

Vậy \(B_{max}=\dfrac{1}{3}\Leftrightarrow x=1\)

16 tháng 6 2019

một hình chữ nhật có chiều rộng là 1/3 mét, chiều dài gấp 5 lần chiều rộng. Tính chu vi và diện tích hình chữ nhật đó.

16 tháng 6 2019

\(\frac{x^2-\sqrt{2}}{x^4+x^2\sqrt{3}-x^2\sqrt{2}-\sqrt{6}}\)

\(=\frac{x^2-\sqrt{2}}{x^2\left(x^2-\sqrt{2}\right)+\sqrt{3}\left(x^2-\sqrt{2}\right)}\)

\(=\frac{x^2-\sqrt{2}}{\left(x^2-\sqrt{2}\right)\left(x^2+\sqrt{3}\right)}\)

\(=\frac{1}{x^2+\sqrt{3}}\)

Vì \(x^2+\sqrt{3}\ge\sqrt{3}\)với \(\forall x\)\(\Rightarrow\frac{1}{x^2+\sqrt{3}}\le\frac{1}{\sqrt{3}}\)\(\Leftrightarrow x=0\)

\(\Rightarrow\)Giá trị lớn nhất của biểu thức là \(\frac{1}{\sqrt{3}}\Leftrightarrow x=0\)

8 tháng 11 2016

47 phần 14