tìm gtnn của biểu thức: D=(2x-1)^2+(x+2)^2+12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
A = |x-7| + |x-5| = |7-x| + |x-5| ≥ |7-x + x-5| = 2
minA = 2
đạt khi 7-x và x-5 cùng dấu <=> (7-x)(x-5) ≥ 0 <=> 5 ≤ x ≤ 7
B = (2x-1)² - 3|2x-1| + 2 = |2x-1|² - 2.|2x-1|.(3/2) + 9/4 + 2 - 9/4
B = (|2x-1| - 3/2)² - 1/4 ≥ -1/4
minB = -1/4
đạt khi: |2x-1| = 3/2 <=> 2x-1 = 3/2 hoặc 2x-1 = -3/2 <=> x = 5/4 hoặc x = -1/4
C = |x² + x + 1| + |x² + x -12| = |x² + x + 1| + |12 - x² - x | ≥
≥ |x² + x + 1 + 12 - x² - x| = |13| = 13
minC = 13
đạt khi (x² + x +1) và (12 - x² - x) cùng dấu
<=> (x²+x+1)(12-x²-x) ≥ 0 <=> -1 ≤ x²+x ≤ 12 <=>
{x² + x + 1 ≥ 0
{x² + x -12 ≤ 0
<=>
(x + 4)(x - 3) ≤ 0 <=> -4 ≤ x ≤ 3
tóm lại:
minC = 13 đạt khi -4 ≤ x ≤ 3
học tốt
Ta có: \(2x^2+x+1\)
\(=\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.\frac{1}{2\sqrt{2}}+\frac{1}{8}+\frac{7}{8}\)
\(=\left(\sqrt{2}x+\frac{1}{2\sqrt{2}}\right)^2+\frac{7}{8}\ge\frac{7}{8}\)
\(\frac{\Rightarrow\left(\sqrt{2}x+\frac{1}{2\sqrt{2}}\right)^2+\frac{7}{8}}{-2}\le\frac{-7}{16}\)
(Dấu "="\(\Leftrightarrow\sqrt{2}x+\frac{1}{2\sqrt{2}}=0\Leftrightarrow x=\frac{-1}{4}\)
\(D=\frac{2x^2+x+1}{-2}\)
\(=\frac{2\left(x^2+\frac{1}{2}x+\frac{1}{2}\right)}{-2}\)
\(=\frac{2\left(x^2+2.x.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}+\frac{1}{2}\right)}{-2}\)
\(=\frac{2\left(x+\frac{1}{2}\right)^2+\frac{7}{8}}{-2}\)
Vì \(2\left(x+\frac{1}{2}\right)^2\ge0;\forall x\)
\(\Rightarrow2\left(x+\frac{1}{2}\right)^2+\frac{7}{8}\ge\frac{7}{8};\forall x\)
\(\Rightarrow\frac{2\left(x+\frac{1}{2}\right)^2+\frac{7}{8}}{-2}\ge\frac{-7}{16};\forall x\)
Dấu'="xảy ra \(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(D_{min}=\frac{-7}{16}\)\(\Leftrightarrow x=\frac{-1}{2}\)
c: Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-\dfrac{1}{3}\right)^2\ge0\forall y\)
Do đó: \(\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2\ge0\forall x,y\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\forall x,y\)
Dấu '=' xảy ra khi x=-1 và \(y=\dfrac{1}{3}\)
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
bài 1:= \(2x\left(x-3\right)-6\left(x-3\right)+2y\left(x-3\right)\)
=\(2\left(x-3\right)\left(x+y-3\right)\)
bài 2:P=\(x^2-2x+1+y^2+6y+9+2\)
P=\(\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)
vậy Pmin=2 khi x=1 và y=-3
a) Đặt \(A=-x^2+9x-12\)
\(-A=x^2-9x+12\)
\(-A=\left(x^2-9x+\frac{81}{4}\right)-\frac{33}{4}\)
\(-A=\left(x-\frac{9}{2}\right)^2-\frac{33}{4}\)
Mà \(\left(x-\frac{9}{2}\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge-\frac{33}{4}\Leftrightarrow A\le\frac{33}{4}\)
Dấu "=" xảy ra khi : \(x-\frac{9}{2}=0\Leftrightarrow x=\frac{9}{2}\)
Vậy \(A_{Max}=\frac{33}{4}\Leftrightarrow x=\frac{9}{2}\)
b) Đặt \(B=2x^2+10x-1\)
\(B=2\left(x^2+5x+\frac{25}{4}\right)-\frac{29}{4}\)
\(B=2\left(x+\frac{5}{2}\right)^2-\frac{29}{4}\)
Mà \(\left(x+\frac{5}{2}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{5}{2}\right)^2\ge0\forall x\)
\(\Rightarrow B\ge-\frac{29}{4}\)
Dấu "=" xảy ra khi : \(x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)
Vậy \(B_{Min}=-\frac{29}{4}\Leftrightarrow x=-\frac{5}{2}\)
c) Đặt \(C=\left(2x+6\right)\left(x-1\right)\)
\(C=2x^2-2x+6x-6\)
\(C=2x^2+4x-6\)
\(C=2\left(x^2+2x+1\right)-8\)
\(C=2\left(x+1\right)^2-8\)
Mà \(\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow C\ge-8\)
Dấu "=" xảy ra khi : \(x+1=0\Leftrightarrow x=-1\)
Vậy \(C_{Min}=-8\Leftrightarrow x=-1\)
d) Đặt \(D=3x-2x^2\)
\(-2D=4x^2-6x\)
\(-2D=\left(4x^2-6x+\frac{9}{4}\right)-\frac{9}{4}\)
\(-2D=\left(2x-\frac{3}{2}\right)^2-\frac{9}{4}\)
Mà \(\left(2x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow-2D\ge-\frac{9}{4}\)
\(\Leftrightarrow D\le\frac{9}{8}\)
Dấu "=" xảy ra khi : \(2x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{4}\)
Vậy \(D_{Max}=\frac{9}{8}\Leftrightarrow x=\frac{3}{4}\)
Tìm GTLN:
\(A=-x^2+6x-15\)
\(=-\left(x^2-6x+15\right)\)
\(=-\left(x^2-2.x.3+9+6\right)\)
\(=-\left(x+3\right)^2-6\le0\forall x\)
Dấu = xảy ra khi:
\(x-3=0\Leftrightarrow x=3\)
Vậy Amax = - 6 tại x = 3
Tìm GTNN :
\(A=x^2-4x+7\)
\(=x^2+2.x.2+4+3\)
\(=\left(x+2\right)^2+3\ge0\forall x\)
Dấu = xảy ra khi:
\(x+2=0\Leftrightarrow x=-2\)
Vậy Amin = 3 tại x = - 2
Các câu còn lại làm tương tự nhé... :)
Ta có: \(D=\left(2x-1\right)^2+\left(x+2\right)^2+12\)
\(=4x^2-4x+1+x^2+4x+4+12\)
\(=5x^2+17\ge17\forall x\)
Dấu '=' xảy ra khi x=0
\(D=\left(2x-1\right)^2+\left(x+2\right)^2+12\)
\(=4x^2-4x+1+x^2+4x+4+12=5x^2+17\ge17\)
Dấu ''='' xảy ra khi x = 0
Vậy GTNN D bằng 17 tại x = 0