5^(x+4) -3.5^(x+3)=2.5^1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
1.
$3^{x+2}+4.3^{x+1}=7.3^6$
$3^{x+1}.3+4.3^{x+1}=7.3^6$
$3^{x+1}(3+4)=7.3^6$
$3^{x+1}.7=7.3^6$
$\Rightarrow 3^{x+1}=3^6$
$\Rightarrow x+1=6$
$\Rightarrow x=5$
2.
$5^{x+4}-3.5^{x+3}=2.5^{11}$
$5^{x+3}.5-3.5^{x+3}=2.5^{11}$
$5^{x+3}(5-3)=2.5^{11}$
$2.5^{x+3}=2.5^{11}$
$\Rightarrow 5^{x+3}=5^{11}$
$\Rightarrow x+3=11$
$\Rightarrow x=8$
3.
$4^{x+3}-3.4^{x+1}=13.4^{11}$
$4^{x+1}.4^2-3.4^{x+1}=13.4^{11}$
$4^{x+1}.16-3.4^{x+1}=13.4^{11}$
$13.4^{x+1}=13.4^{11}$
$\Rightarrow 4^{x+1}=4^{11}$
$\Rightarrow x+1=11$
$\Rightarrow x=10$
\(\Leftrightarrow5^x\cdot625-3\cdot5^x\cdot125=2\cdot5^{11}\)
\(\Leftrightarrow5^x\cdot250=2\cdot5^{11}\)
\(\Leftrightarrow5^x=5^8\)
hay x=8
a) \(2.5^2.3^2+\left\{\left[2.5^3-\left(5x+4\right).5\right]:\left(2^2.3.5\right)\right\}=453\)
\(2.25.9+\left\{\left[2.125-\left(5x+4\right).5\right]:\left(4.3.5\right)\right\}=453\)
\(50.9+\left\{\left[250-\left(5x+4\right).5\right]:60\right\}=453\)
\(450+\left\{\left[250-\left(5x+4\right).5\right]:60\right\}=453\)
\(\left[250-\left(5x+4\right).5\right]:60=453-450\)
\(\left[250-\left(5x+4\right).5\right]:60=3\)
\(250-\left(5x+4\right).5=3.60\)
\(250-\left(5x+4\right).5=180\)
\(\left(5x+4\right).5=250-180\)
\(\left(5x+4\right).5=70\)
\(5x+4=70:5\)
\(5x+4=14\)
\(5x=14-4\)
\(5x=10\)
\(x=10:5\)
\(x=2\)
Vậy \(x=2\)
b) \(\left|x-\frac{1}{3}\right|=2\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=-2\\x-\frac{1}{3}=2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\left(-2\right)+\frac{1}{3}\\x=2+\frac{1}{3}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-5}{3}\\x=\frac{7}{3}\end{cases}}\)
Vậy \(x\in\left\{\frac{-5}{7};\frac{7}{3}\right\}\)
\(5^{x+4}-3.5^{x+3}=2.5^{11}\)
\(\Rightarrow5^x.5^4-3.5^x.5^3=2.5^{11}\)
\(\Rightarrow5^x.5^3\left(5-3\right)=2.5^{11}\)
\(\Rightarrow5^x.2=2.5^8\)
\(\Rightarrow5^x=5^8\)
\(\Rightarrow x=8\)
Vậy \(x=8\)
Ta có:\(5^{x+4}-3\cdot5^{x+3}=2\cdot5\)
\(5^x\cdot5^4-3\cdot5^x\cdot5^3=10\)
\(5^x\left(5^4-3\cdot5^3\right)=10\)
\(5^x\cdot250=10\)
\(5^x=10:250\)
\(5^x=\frac{1}{25}\)
\(5^x=5^{-2}\)
\(\Rightarrow x=-2\)
\(5^{x+4}-3.5^{x+3}=2.5\)
\(\Rightarrow5^{x+3}.5-3.5^{x+3}=2.5\)
\(\Rightarrow5^{x+3}.\left(5-3\right)=2.5\)
\(\Rightarrow5^{x+3}.2=2.5\)
\(\Rightarrow5^{x+3}=5\)
\(\Rightarrow x+3=1\)
\(\Rightarrow x=-2\)
Vậy \(x=-2\)