a.b=c2
thay vào 2 ta có: \(\frac{a^2+a.b}{b^2+a.b}=\frac{a}{b}\)
nhân ra ta có:a2 .b +a.b2 =a.b2+a2.b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.b=c2
thay vào 2 ta có: \(\frac{a^2+a.b}{b^2+a.b}=\frac{a}{b}\)
nhân ra ta có:a2 .b +a.b2 =a.b2+a2.b
Ta luôn nhớ: b2 luông mang dấu +
Tích của 2 số cùng dấu thì dương.
Tích của 2 số khác dấu thì âm.
Dấu của a | Dấu của b | Dấu của b2 | Dấu của a.b | Dấu của a.b2 |
+ | + | + | + | + |
+ | - | + | – | + |
- | + | + | – | – |
- | - | + | + | – |
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a}{b}.\frac{a}{b}=\frac{a^2}{b^2};\frac{a}{b}.\frac{c}{d}=\frac{c}{d}.\frac{c}{d}=\frac{c^2}{d^2}\\ \Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\), suy ra \(a=bk;c=dk\)
\(VT=\frac{2b^2k^2-3b^2k+3b^2}{2b^2+3b^2k}=\frac{b^2\left(2k^2-3k+3\right)}{b^2\left(2+3k\right)}=\frac{2k^2-3k+3}{3k+2}\left(1\right)\)
\(VP=\frac{2d^2k^2-3d^2k+3d^2}{2d^2+3d^2k}=\frac{d^2\left(2k^2-3k+3\right)}{d^2\left(2+3k\right)}=\frac{2k^2-3k+3}{3k+2}\left(2\right)\)
Từ (1) và (2) suy ra ĐPcm
Lời giải:
a)
Ta có:
\(ab-\frac{a^2+b^2}{2}=\frac{2ab-(a^2+b^2)}{2}=-\frac{a^2+b^2-2ab}{2}=-\frac{(a-b)^2}{2}\leq 0, \forall a,b\in\mathbb{R}\)
\(\Rightarrow ab\leq \frac{a^2+b^2}{2}\) (đpcm)
b) Ta có:
\(ab-\left(\frac{a+b}{2}\right)^2=\frac{4ab-(a+b)^2}{4}=-\frac{a^2+b^2-2ab}{4}=-\frac{(a-b)^2}{4}\leq 0, \forall a,b\in\mathbb{R}\)
\(\Rightarrow ab\leq \left(\frac{a+b}{2}\right)^2\) (đpcm)
c) Sửa đề: Lớn hơn hoặc bằng $(\geq)$ chứ không phải lớn hơn nha.
Ta có:
\((a+b+c)^2-3(ab+bc+ac)=a^2+b^2+c^2-ab-bc-ac\)
\(=\frac{2a^2+2b^2+2c^2-2ab-2bc-2ac}{2}=\frac{(a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)}{2}\)
\(=\frac{(a-b)^2+(b-c)^2+(c-a)^2}{2}\geq 0, \forall a,b,c\in\mathbb{R}\)
\(\Rightarrow (a+b+c)^2\geq 3(ab+bc+ac)\) (đpcm)
Dấu "=" của cả 3 phần xảy ra khi các biển bằng nhau.
Cho \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}\Rightarrow\hept{\begin{cases}a^2=b^2k^2\\c^2=d^2k^2\end{cases}}}\)
Ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)
Lại có: \(\frac{a.b}{c.d}=\frac{bk.b}{dk.d}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\)
Vậy \(\frac{a^2+b^2}{c^2+d^2}=\frac{a.b}{c.d}\left(ĐPCM\right)\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
<=> a2cd + b2cd = abc2 + abd2
<=> a2cd - abd2 = abc2 - b2cd
<=> ad(ac - bd) = bc(ac - bd)
<=> ad = bc
<=> \(\frac{a}{b}=\frac{c}{d}\)
`a)a(2+b)+b(a+2)`
`=2a+ab+ab+2b`
`=2(a+b)+2ab`
`=2.10+2.(-36)`
`=20-72=-52`
`b)a^2+b^2`
`=(a+b)^2-2ab`
`=10^2-2.(-36)`
`=100+72=172`
`c)a^3+b^3`
`=(a+b)(a^2-ab+b^2)`
`=10[(a+b)^2-3ab]`
`=10[10^2-3.(-36)]`
`=10(100+108)`
`=10.208=2080`
a, \(=>2a+ab+ab+2b=2\left(a+b+ab\right)=2\left(10-36\right)=-52\)
b, \(a^2+b^2=a^2+2ab+b^2-2ab=\left(a+b\right)^2-2ab=\left(10\right)^2-2\left(-36\right)=172\)
c, \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=10\left[\left(a+b\right)^2-3ab\right]\)
\(=10\left[10^2-3\left(-36\right)\right]=2080\)
Ta có :
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}=\frac{ab-bc}{\left(a+b\right)-\left(b+c\right)}=\frac{bc-ca}{\left(b+c\right)-\left(c+a\right)}=\frac{ab-ca}{\left(a+b\right)-\left(c+a\right)}\)
\(\Rightarrow a=b=c\)
\(\Rightarrow Q=\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=1\)
tks nha :)
Mà em làm cái này tr'c a, do thấy a off nên thôi, tự suy nghĩ cho rồi, e dựa vào lời chỉ của a nên e tự làm, thế mà cxung đúng