Cho hình chóp SABCD; ABCD là hình thang; M là điểm thuộc đoạn BD; mặt phẳng alpha qua M và song song với SA và CB. Xác định thiết diện của alpha với hình chóp.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn chỉ nên đăng 1 bài 1 lần thôi, tránh làm loãng box toán!
Lời giải:
Vì $SA\perp (ABCD)$ nên
$60^0= \angle (SC, (ABCD))=\angle (SC, AC)=\widehat{SCA}$
Ta có:
$AC=\sqrt{a^2+(2a)^2}=\sqrt{5}a$
$\frac{SA}{AC}=\tan \widehat{SCA}=\tan 60^0=\sqrt{3}$
$\Rightarrow SA=\sqrt{15}a$
$V_{S.ABCD}=\frac{1}{3}.SA.S_{ABCD}$
$=\frac{1}{3}.\sqrt{15}a.a.2a=\frac{2\sqrt{15}}{3}a^3$
Gọi H là hình chiếu vuông góc của S lên đáy \(\Rightarrow\) H là tâm đáy
Gọi E là trung điểm BH \(\Rightarrow ME\perp BD\Rightarrow ME\perp\left(SBD\right)\)
\(\Rightarrow\widehat{MSE}=30^0\)
Ta có: \(ME=\dfrac{1}{2}CH\) (đường trung bình) \(=\dfrac{1}{4}AC=\dfrac{a\sqrt{2}}{4}\)
\(\Rightarrow SM=\dfrac{ME}{sin30^0}=\dfrac{a\sqrt{2}}{2}\) ; \(HM=\dfrac{1}{2}AB=\dfrac{a}{2}\)
\(\Rightarrow SH=\sqrt{SM^2-HM^2}=\dfrac{a}{2}\)
\(V=\dfrac{1}{3}SH.AB^2=\dfrac{a^3}{6}\)
Đáp án B
A C = 2 a ⇒ A B = a 2 S B C ; A B C D ^ = S H O ^ = 45 0 S O = O H . tan 45 ° = a 2 2 V S . A B C D = 1 3 S O . S A B C D = a 3 2 3
Chọn A.
Phương pháp: Sử dụng kiến thức về góc giữa hai đường thẳng: “ Góc giữa hai đường thẳng trong không gian là góc giữa hai đường thẳng (khác) tương ứng song song (hoặc trùng) với hai đường thẳng đó. Từ đó sử dụng lượng giác và định lý
Pytago để tinh đường cao SA
Cách giải:
Có: (SC, (ABCD)) = ∠SCB
Gọi: \(O=AC\cap BD\)
Có: \(OC=\dfrac{1}{2}AC=\dfrac{3}{2}a\)
\(OB=\dfrac{1}{2}BD=\dfrac{5}{2}a\)
Xét tam giác OBC vuông tại O (Do: ABCD là hình thoi nên AC ⊥ BD), có:
\(BC=\sqrt{OB^2+OC^2}=\dfrac{a\sqrt{34}}{2}\)
Xét tam giác SBC vuông tại B (Do: SB ⊥ (ABCD) ), có:
\(SB=BC.tan60^o=\dfrac{a\sqrt{102}}{2}\)
\(\Rightarrow V_{SABCD}=\dfrac{1}{3}.\dfrac{a\sqrt{102}}{2}.\dfrac{1}{2}.3a.5a=\dfrac{5a^3\sqrt{102}}{4}\left(đvtt\right)\)
tại M kẻ đt //BC cắt AB tại I và CD tại K
tại M kẻ đt d // SA,cắt (SBC) tại N, qua N kẻ đt // IK và cắt SB tại E, cắt SC tại F.
Nối E,F,K,I ta đc 1 tứ giác là thiết diện của hình chóp :)