K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2016

tại M kẻ đt //BC cắt AB tại I và CD tại K

tại M kẻ đt d // SA,cắt (SBC) tại N, qua N kẻ đt // IK và cắt SB tại E, cắt SC tại F.

Nối E,F,K,I ta đc 1 tứ giác là thiết diện của hình chóp :)

 

18 tháng 4 2018

AH
Akai Haruma
Giáo viên
8 tháng 6 2021

Bạn chỉ nên đăng 1 bài 1 lần thôi, tránh làm loãng box toán!

AH
Akai Haruma
Giáo viên
8 tháng 6 2021

Lời giải:
Vì $SA\perp (ABCD)$ nên 

$60^0= \angle (SC, (ABCD))=\angle (SC, AC)=\widehat{SCA}$

Ta có:

$AC=\sqrt{a^2+(2a)^2}=\sqrt{5}a$

$\frac{SA}{AC}=\tan \widehat{SCA}=\tan 60^0=\sqrt{3}$

$\Rightarrow SA=\sqrt{15}a$
$V_{S.ABCD}=\frac{1}{3}.SA.S_{ABCD}$

$=\frac{1}{3}.\sqrt{15}a.a.2a=\frac{2\sqrt{15}}{3}a^3$

5 tháng 8 2016

gọi H là h/c cua S lên (ABCD)

HC=3/4 AC\(\Rightarrow\)SH

S\(_{ABCD}\)=

V\(SABCD\)=\(\frac{1}{3}\)SH.S\(_{ABCD}\)
 

NV
21 tháng 8 2021

Gọi H là hình chiếu vuông góc của S lên đáy \(\Rightarrow\) H là tâm đáy

Gọi E là trung điểm BH \(\Rightarrow ME\perp BD\Rightarrow ME\perp\left(SBD\right)\)

\(\Rightarrow\widehat{MSE}=30^0\)

Ta có: \(ME=\dfrac{1}{2}CH\) (đường trung bình) \(=\dfrac{1}{4}AC=\dfrac{a\sqrt{2}}{4}\)

\(\Rightarrow SM=\dfrac{ME}{sin30^0}=\dfrac{a\sqrt{2}}{2}\) ; \(HM=\dfrac{1}{2}AB=\dfrac{a}{2}\)

\(\Rightarrow SH=\sqrt{SM^2-HM^2}=\dfrac{a}{2}\)

\(V=\dfrac{1}{3}SH.AB^2=\dfrac{a^3}{6}\)

NV
21 tháng 8 2021

undefined

10 tháng 10 2018

Đáp án B

A C = 2 a ⇒ A B = a 2 S B C ; A B C D ^ = S H O ^ = 45 0 S O   = O H . tan 45 ° = a 2 2 V S . A B C D = 1 3 S O . S A B C D = a 3 2 3

 

 

3 tháng 9 2019

Chọn A.

Phương pháp: Sử dụng kiến thức về góc giữa hai đường thẳng: “ Góc giữa hai đường thẳng trong không gian là góc giữa hai đường thẳng (khác) tương ứng song song (hoặc trùng) với hai đường thẳng đó. Từ đó sử dụng lượng giác và định lý 

Pytago để tinh đường cao SA 

Cách giải:

25 tháng 11 2021

Có: (SC, (ABCD)) = ∠SCB

Gọi: \(O=AC\cap BD\)

Có: \(OC=\dfrac{1}{2}AC=\dfrac{3}{2}a\)

\(OB=\dfrac{1}{2}BD=\dfrac{5}{2}a\)

Xét tam giác OBC vuông tại O (Do: ABCD là hình thoi nên AC ⊥ BD), có:

\(BC=\sqrt{OB^2+OC^2}=\dfrac{a\sqrt{34}}{2}\)

Xét tam giác SBC vuông tại B (Do: SB ⊥ (ABCD) ), có:

\(SB=BC.tan60^o=\dfrac{a\sqrt{102}}{2}\)

\(\Rightarrow V_{SABCD}=\dfrac{1}{3}.\dfrac{a\sqrt{102}}{2}.\dfrac{1}{2}.3a.5a=\dfrac{5a^3\sqrt{102}}{4}\left(đvtt\right)\)

2 tháng 2 2018

Chọn B

30 tháng 4 2019

Chọn A