a) 3n+11 chia hết cho n+1
b) 3n+24 chia hết cho n-4
c) 3n+5 chia hết cho n+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đễ nhưng quá nhiều không đủ kiên nhẫn để làm. Bạn đăng lần lượt thôi.
a) 3n + 2 chia hết cho n - 1
\(\Rightarrow\) 3n - 3 + 5 chia hết cho n - 1
\(\Rightarrow\) 3(n - 1) + 5 chia hết cho n - 1
\(\Rightarrow\) 5 chia hết cho n - 1
\(\Rightarrow\) n - 1 \(\in\) Ư(5) = {-1; 1; -5; 5}
\(\Rightarrow\) n \(\in\) {0; 2; -4; 6}
b) 3n + 24 chia hết cho n - 4
\(\Rightarrow\) 3n - 12 + 36 chia hết cho n - 4
\(\Rightarrow\) 3(n - 4) + 36 chia hết cho n - 4
\(\Rightarrow\) 36 chia hết cho n - 4
\(\Rightarrow\) n - 4 \(\in\) Ư(36) = {-1; 1; -2; 2; -3; 3; -4; 4; -6; 6; -9; 9; -12; 12; -18; 18; -36; 36}
\(\Rightarrow\) n \(\in\) {-3; 5; 4; 6; -1; 7; 0; 8; -2; 10; -5; 13; -8; 16; -14; 22; -32; 40}
c) 3n + 5 chia hết cho n + 1
\(\Rightarrow\) 3n + 3 + 2 chia hết cho n + 1
\(\Rightarrow\) 3(n + 1) + 2 chia hết cho n + 1
\(\Rightarrow\) 2 chia hết cho n + 1
\(\Rightarrow\) n + 1 \(\in\) Ư(2) = {-1; 1; -2; 2}
\(\Rightarrow\) n \(\in\) {0; 2; -1; 3}
ai mà lước qua mà ko tick tui thìa cha mẹ người ko tíck sẽ chết bất đắt kỳ tử
\(a)n+7⋮n+2\)
\(\Rightarrow n+2+5⋮n+2\)
Mà n + 2 chia hết cho n + 2 => \(5⋮n+2\)=> n + 2 thuộc Ư\((5)\)\(=\left\{\pm1;\pm5\right\}\)
Lập bảng :
n + 2 | 1 | -1 | 5 | -5 |
n | -1 | -3 | 3 | -7 |
Vậy : ...
a)3n+2=3(n-1)+5 mà 3(n-1) chia hết cho n-1
suy ra 5 chia hết cho n-1
=>n-1 thuộc ư(5)=1;5
=>n=2;6
b)3n+24=3(n+1)+21 mà 3(n+1) chia hết cho n+1
=>21 chia hết cho n+1=>n+1thuộc ư(21)=1;3;7;21
=>n=0;2;6;20
c)n^2+5=n(n-1)+n+5 mà (n-1)n chia hết cho n-1
=>n+5 chia hết cho n+1
=>4 chia hết cho n+1
hay n+1 thuộc ư(4)=1;2;4
=>n=0;1;3
________________________________________________
lik-e cho mình nha bn Lưu Nhật Khánh Ly
Vì : \(3n+11⋮n+1\)
Mà : \(n+1⋮n+1\Rightarrow3\left(n+1\right)⋮n+1\Rightarrow3n+3⋮n+1\)
\(\Rightarrow\left(3n+11\right)-\left(3n+3\right)⋮n+1\)
\(\Rightarrow\left(3n+11-3n-3\right)⋮n+1\)
\(\Rightarrow8⋮n+1\)\(\Rightarrow n+1\inƯ\left(8\right)\)
\(Ư\left(8\right)=\left\{1;2;4;8\right\}\)
+) Nếu : n + 1 = 1 => n = 0
+) Nếu : n + 1 = 2 => n = 1
+) Nếu : n + 1 = 4 => n = 3
+) Nếu : n + 1 = 8 => n = 7
Vậy : \(n\in\left\{0;1;3;7\right\}\)
b, Vì : \(3n+24⋮n-4\)
Mà : \(n-4⋮n-4\Rightarrow3\left(n-4\right)⋮n-4\Rightarrow3n-12⋮n-4\)
\(\Rightarrow\left(3n+24\right)-\left(3n-12\right)⋮n-4\)
\(\Rightarrow\left(3n+24-3n+12\right)⋮n-4\)
\(\Rightarrow36⋮n-4\)\(\Rightarrow n-4\inƯ\left(36\right)\)
\(Ư\left(36\right)=\left\{1;2;3;4;6;9;12;18;36\right\}\)
+) Nếu n - 4 = 1 => n = 5
+) Nếu n - 4 = 2 => n = 6
+) Nếu n - 4 = 3 => n = 7
+) Nếu n - 4 = 4 => n = 8
+) Nếu n - 4 = 6 => n = 10
+) Nếu n - 4 = 9 => n = 13
+) Nếu n - 4 = 12 => n = 16
+) Nếu n - 4 = 18 => n = 22
+) Nếu n - 4 = 36 => n = 40
Vậy : \(n\in\left\{5;6;7;8;10;13;16;22;40\right\}\)
c, Vì : \(3n+5⋮n+1\)
Mà : \(n+1⋮n+1\Rightarrow3\left(n+1\right)⋮n+1\Rightarrow3n+3⋮n+1\)
\(\Rightarrow\left(3n+5\right)-\left(3n+3\right)⋮n+1\)
\(\Rightarrow3n+5-3n-3⋮n+1\)
\(\Rightarrow2⋮n+1\Rightarrow n+1\inƯ\left(2\right)\)
\(Ư\left(2\right)=\left\{1;2\right\}\)
+) Nếu : n + 1 = 1 => n = 0
+) Nếu : n + 1 = 2 => n = 1
Vậy : \(n\in\left\{0;1\right\}\)
a)\(\frac{3n+11}{n+1}=\frac{3\left(n+1\right)+8}{n+1}=\frac{3\left(n+1\right)}{n+1}+\frac{8}{n+1}=3+\frac{8}{n+1}\in Z\)
\(\Rightarrow8⋮n+1\)
\(\Rightarrow n+1\inƯ\left(8\right)=\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
...
các phần khác tương tự