K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2016

pt\(\Leftrightarrow\sqrt{\left(x+3\right)\left(x+7\right)}-2\sqrt{x+7}+6-3\sqrt{x+3}=0 \)

 

 

 

9 tháng 11 2016

nhầm .pt\(\sqrt{x+3}̣̣\left(\sqrt{x+7}-3\right)-2\left(\sqrt{x+7}-3\right)=0\)

\(\Leftrightarrow\left(\sqrt{x+7}-3\right)\left(\sqrt{x+3}-2\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x+7}-3=0\\\sqrt{x+3}-2=0\end{array}\right.\)

bạn tự giải đc rồi nhé

18 tháng 2 2016

Sorry mình nới học lớp 6 thôi 3 năm sau thì mình sẽ giải cho bạn

20 tháng 3 2019

ĐKXĐ tự tìm\(\left\{{}\begin{matrix}\sqrt{x+3}=a\\\sqrt{x+7}=b\end{matrix}\right.\)

\(\Leftrightarrow ab=3a+2b-6\Leftrightarrow ab-3a-2b+6=0\)

\(\Leftrightarrow a\left(b-3\right)-2\left(b-3\right)=0\Leftrightarrow\left(a-2\right)\left(b-3\right)=0\Rightarrow\left[{}\begin{matrix}a=2\\b=3\end{matrix}\right.\Rightarrow....\)

28 tháng 10 2023

a: ĐKXĐ: \(\left\{{}\begin{matrix}x-3>=0\\5-x>=0\end{matrix}\right.\)

=>3<=x<=5

\(\sqrt{x-3}+\sqrt{5-x}=2\)

=>\(\sqrt{x-3}-1+\sqrt{5-x}-1=0\)

=>\(\dfrac{x-3-1}{\sqrt{x-3}+1}+\dfrac{5-x-1}{\sqrt{5-x}+1}=0\)

=>\(\left(x-4\right)\left(\dfrac{1}{\sqrt{x-3}+1}-\dfrac{1}{\sqrt{5-x}+1}\right)=0\)

=>x-4=0

=>x=4

26 tháng 12 2017

ta có pt

<=>\(\sqrt{\left(x+3\right)\left(x+7\right)}=3\sqrt{x+3}+2\sqrt{x+7}=6\)

đặt \(\sqrt{x+3}=a;\sqrt{x+7}=b\)

nên pt <=>\(ab=3a+2b-6\Leftrightarrow ab-3a-2b+6=0\)

\(\Leftrightarrow a\left(b-3\right)-2\left(b-3\right)=0\Leftrightarrow\left(a-2\right)\left(b-3\right)=0\)

đến đây thì dễ rồi

26 tháng 12 2017

biêu thức dài dài trong căn pt thành nhân tử là \(\sqrt{\left(x+3\right)\left(x+7\right)}\)

xong rùi bn pt thành nhân tử sẽ có dạng \(\left(\sqrt{x+3}-2\right)\left(\sqrt{x+7}-3\right)=0\)

đến day bn làm tiếp nhé

18 tháng 2 2016

bạn đặt t= cái phần sau dấu = ..........làm tiếp

18 tháng 2 2016

nếu thế thì có liên quan gì với phần trước không?

22 tháng 11 2015

x>/ -3

\(\Leftrightarrow\sqrt{\left(x+3\right)\left(x+7\right)}-3\sqrt{x+3}+2\sqrt{x+7}-6=0\)

\(\Leftrightarrow\sqrt{x+3}\left(\sqrt{x+7}-3\right)+2\left(\sqrt{x+7}-3\right)=0\)

\(\Leftrightarrow\left(\sqrt{x+7}-3\right)\left(\sqrt{x+3}+2\right)=0\)

\(\Leftrightarrow\sqrt{x+7}-3=0\Rightarrow x+7=9\Rightarrow x=2\left(TM\right)\)

1. Giải phương trình:1/ \(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)2/ \(\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}=8\)3/ \(y^2-2y+3=\dfrac{6}{x^2+2x+4}\)4/ \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)5/ \(x^2-\left(m+1\right)x+2m-6=0\)6/ \(615+x^2=2^y\)2.a, Cho các số dương a,b thoả mãn \(a+b=2ab\).Tính GTLN của biểu thức \(Q=\dfrac{2}{\sqrt{a^2+b^2}}\).b, Cho các số thực x,y thoả mãn \(x-\sqrt{y+6}=\sqrt{x+6}-y\).Tính GTNN và GTLN của biểu thức \(P=x+y\).3. Cho hàm...
Đọc tiếp

1. Giải phương trình:

1/ \(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)

2/ \(\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}=8\)

3/ \(y^2-2y+3=\dfrac{6}{x^2+2x+4}\)

4/ \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)

5/ \(x^2-\left(m+1\right)x+2m-6=0\)

6/ \(615+x^2=2^y\)

2.

a, Cho các số dương a,b thoả mãn \(a+b=2ab\).

Tính GTLN của biểu thức \(Q=\dfrac{2}{\sqrt{a^2+b^2}}\).

b, Cho các số thực x,y thoả mãn \(x-\sqrt{y+6}=\sqrt{x+6}-y\).

Tính GTNN và GTLN của biểu thức \(P=x+y\).

3. Cho hàm số \(y=\left(m+3\right)x+2m-10\) có đồ thị đường thẳng (d), hàm số \(y=\left(m-4\right)x-2m-8\) có đồ thị đường thẳng (d2) (m là tham số, \(m\ne-3\) và \(m\ne4\)). Trên mặt phẳng toạ độ Oxy, (d) cắt trục hoành tại điểm A, (d2) cắt trục hoành tại điểm B, (d) cắt (d2) tại điểm C nằm trên trục tung. Chứng minh hệ thức \(\dfrac{OA}{BC}=\dfrac{OB}{AC}\).

4. Cho 2 đường tròn (O) và (I) cắt nhau tại dây AB, chứng minh rằng \(\Delta OAI=\Delta OBI\).

0
28 tháng 9 2016

Áp dụng bđt \(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\) ta có 

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}=a^2+b^2+c^2\)

28 tháng 9 2016

Bài 1. Đặt \(a=\sqrt{x+3},b=\sqrt{x+7}\)

\(\Rightarrow a.b+6=3a+2b\) và \(b^2-a^2=4\)

Từ đó tính được a và b

Bài 2. \(\frac{2x-1}{x^2}+\frac{y-1}{y^2}+\frac{6z-9}{z^2}=\frac{9}{4}\)

\(\Leftrightarrow\frac{2}{x}-\frac{1}{x^2}+\frac{1}{y}-\frac{1}{y^2}+\frac{6}{z}-\frac{9}{z^2}-\frac{9}{4}=0\)

Đặt \(a=\frac{1}{x},b=\frac{1}{y},c=\frac{1}{z}\)

Ta có \(2a-a^2+b-b^2+6c-9c^2-\frac{9}{4}=0\)

\(\Leftrightarrow-\left(a^2-2a+1\right)-\left(b^2-b+\frac{1}{4}\right)-\left(9c^2-6c+1\right)=0\)

\(\Leftrightarrow-\left(a-1\right)^2-\left(b-\frac{1}{2}\right)^2-\left(3c-1\right)^2=0\)

Áp dụng tính chất bất đẳng thức suy ra a = 1 , b = 1/2 , c = 1/3

Rồi từ đó tìm được x,y,z

AH
Akai Haruma
Giáo viên
29 tháng 4 2023

Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$

$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$

$\Leftrightarrow x-2=0$ hoặc $4-x=0$

$\Leftrightarrow x=2$ hoặc $x=4$ (tm)

AH
Akai Haruma
Giáo viên
29 tháng 4 2023

Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$

$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$

Với $4x^3-3x^2+6x-4=0(*)$

Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$

Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:

$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$

Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)

Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)