Giá trị nhỏ nhất của A=(x-8)2+2014 là bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2+4x+3=\left(x^2+4x+4\right)-1\)
\(=\left(x+2\right)^2-1\ge-1\)
Dấu "=" xảy ra <=> x = -2
Vậy ...
a, Ta có: \(\hept{\begin{cases}\left|x+2\right|\ge0\\\left|2y-10\right|\ge0\end{cases}\Rightarrow\left|x+2\right|+\left|2y-10\right|}\ge0\)
\(\Rightarrow\left|x+2\right|+\left|2y-10\right|+2014\ge2014\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|x+2\right|=0\\\left|2y-10\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=5\end{cases}}}\)
Vậy SMin = 2014 tại x = -2 và y = 5
b, Đặt A = |x + 6| + |7 - x|
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\),ta có:
\(A=\left|x+6\right|+\left|7-x\right|\ge\left|x+6+7-x\right|=13\)
Dấu "=" xảy ra <=> \(\left(x+6\right)\left(7-x\right)\ge0\Leftrightarrow-6\le x\le7\)
Vậy AMin = 13 tại \(-6\le x\le7\)
Để biểu thức S đạt giá trị nhỏ nhất => | x + 2 | và | 2y - 10 | có giá trị nhỏ nhất
=> | x+2 | = 0 => x = 0 - 2 = -2 ; | 2y -10 | =0 => 2y = 0 - 10 = -10 => y = -10 : 2 = -5
Vậy x = -2 ; y = -5 thì biểu thức S đạt giá trị nhỏ nhất
\(\left\{{}\begin{matrix}x+y=2\left(m-1\right)\left(1\right)\\2x-y=m+8\left(2\right)\end{matrix}\right.\)
Từ (1) ⇒ \(y=2\left(m-1\right)-x\)
Thay vào (2), ta có:
\(2x-2\left(m-1\right)+x=m+8\)
\(\Leftrightarrow3x-2m+2=m+8\\ \Leftrightarrow3x=3m+6\\ \Leftrightarrow x=m+2\)
\(\Rightarrow y=2\left(m-1\right)-\left(m+2\right)\\ \Leftrightarrow y=2m-2-m-2\\ \Leftrightarrow y=m-4\)
Ta có:
\(x^2+y^2=\left(m+2\right)^2+\left(m-4\right)^2\\ =m^2+4m+4+m^2-8m+16\\ =2m^2-4m+20\\ =2\left(m-1\right)^2+18\)
\(Vì\left(m-1\right)^2\ge0\forall m\in R\\ \Rightarrow2\left(m-1\right)^2+18\ge18\\ \Rightarrow x^2+y^2\ge18\)
Dấu "=" xảy ra ⇔ \(m=1\)
Bài 1 :
a) \(a\ne x\)
b) Tại a= 2 PT
\(\Leftrightarrow\left(5.2-8\right)x=2014\)
\(\Leftrightarrow2x=2014\)
\(\Leftrightarrow x=1007\)
Vậy tập nghiệm của phương trình đã cho khi a=2 là \(S=\left(1007\right)\)
Bài 2
Ta có :\(f\left(x\right)=2x^2-12x+14\)
\(=2\left(x^2-6x+9\right)-4\)
\(=2\left(x-3\right)^2-4\ge-4\)
Dấu \("="\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy GTNN của \(f\left(x\right)\)là \(-4\)khi \(x=3\)
Nhớ K cho tớ nhé