K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

ΔABK nội tiếp đường tròn

AK là đường kính

Do đó: ΔABK vuông tại B

Xét (O) có

ΔACK nội tiếp đường tròn

AK là đường kính

Do đó: ΔACK vuông tại C

Xét tứ giác BHCK có

BH//CK

BK//CH

Do đó: BHCK là hình bình hành

7 tháng 10 2021

\(a,\widehat{ABK}=\widehat{ACK}=90^0\) (góc nt chắn nửa đường tròn) nên \(\Delta ABK;\Delta ACK\) vuông tại B và C

\(b,\left\{{}\begin{matrix}CK//BH\left(\perp AC\right)\\BK//CH\left(\perp AB\right)\end{matrix}\right.\Rightarrow BHCK\) là hbh

\(c,\left\{{}\begin{matrix}AO=OM=R\\OM//AH\left(\perp BC\right)\end{matrix}\right.\Rightarrow HM=MK\)

Hình bình hành BHCK có M là trung điểm HK nên cũng là trung điểm BC

\(d,\left\{{}\begin{matrix}AO=OK=R\\HM=MK\left(cm.trên\right)\end{matrix}\right.\Rightarrow OM\) là đtb tam giác AHK

\(\Rightarrow OM=\dfrac{1}{2}AH\)

a: Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>BD vuông góc AB

=>BD//CH

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

=>AC vuông góc CD

=>CD//BH

Xét tứ giác BHCD có

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

b: BHCD là hình bình hành

=>BC cắt HD tại trung điểm của mỗi đường

=>I là trung điểm của HD

Xét ΔHDA có

I,O lần lượt là trung điểm của DH,DA

=>IO là đường trung bình

=>IO//AH và IO=AH/2

=>AH=2IO

5 tháng 9 2023

Vẽ hình giúp em với ạ, em cảm ơn nhiều

 

 

10 tháng 12 2021

a: Xét tứ giác BHCD có 

M là trung điểm của BC

M là trung điểm của HD

Do đó: BHCD là hình bình hành

10 tháng 12 2021

Bạn cho mình cái hình tham khảo được k ạ

1 tháng 7 2021

a) Ta có: \(\angle BEC=\angle BDC=90\Rightarrow BCDE\) nội tiếp

Gọi I là trung điểm BC

Vì \(\Delta BEC\) vuông tại E có I là trung điểm BC \(\Rightarrow IE=IB=IC\)

Vì \(\Delta BDC\) vuông tại D có I là trung điểm BC \(\Rightarrow ID=IB=IC\)

\(\Rightarrow ID=IE=IB=IC\Rightarrow I\) là tâm của (BCDE)

b) Vì AK là đường kính \(\Rightarrow\angle ABK=\angle ACK=90\)

\(\Rightarrow\left\{{}\begin{matrix}BK\bot AB\\CK\bot AC\end{matrix}\right.\) mà \(\left\{{}\begin{matrix}CH\bot AB\\BH\bot AC\end{matrix}\right.\Rightarrow\) \(CH\parallel BK,BH\parallel CK\)

\(\Rightarrow BHCK\) là hình bình hành có I là trung điểm BC

\(\Rightarrow H,I,K\) thẳng hàng

a) Xét tứ giác AEHF có

\(\widehat{AFH}\) và \(\widehat{AEH}\) là hai góc đối

\(\widehat{AFH}+\widehat{AEH}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

25 tháng 3 2021

mk biết rồi giải hộ mk phần c vs d kìa 

p kia mk biết rồi

 

22 tháng 11 2022

a: Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>BD//CH

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

=>CD//BH

Xét tứ giác BHCD có

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

b: BHCD là hình bình hành

nên BC cắt HD tại trung điểm của mỗi đường

=>I là trung điểm của HD

Xét ΔDAH có DI/DH=DO/DA

nen Io//AH và IO=AH/2

=>AH=2OI

c: G là trọng tâm

nên AG=2AI

Xét ΔAHD có

AI là trung tuyến

AG=2/3AI

DO đó: G là trọng tâm

21 tháng 6 2017

b) Vì AHIO là hình bình hành nên OI = AH = 2OM

Gọi P là trung điểm OC PJ là trung trực OC PJ OC.

Có OM là trung trực BC OM BC. Suy ra

Δ O J P ~ Δ O C M ( g . g ) ⇒ O J O C = O P O M ⇒ O J . O M = O C . O P ⇒ O J .2 O M = O C .2 O P ⇒ O J . O I = O C . O C = R 2