K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2021

ĐK: \(x\ne\dfrac{\pi}{2}+k\pi\)

Ta có: 

\(\left\{{}\begin{matrix}tanx=3\\sin^2x+cos^2x=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}sinx=3cosx\\9cos^2x+cos^2x=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}sinx=3cosx\\cos^2x=\dfrac{1}{10}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}sinx=3cosx\\cosx=\pm\dfrac{1}{\sqrt{10}}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}sinx=\dfrac{3}{\sqrt{10}}\\cosx=\dfrac{1}{\sqrt{10}}\end{matrix}\right.\\\left\{{}\begin{matrix}sinx=-\dfrac{3}{\sqrt{10}}\\cosx=-\dfrac{1}{\sqrt{10}}\end{matrix}\right.\end{matrix}\right.\)

NV
10 tháng 8 2021

1.

\(sin^2x+cos^2x=1\Rightarrow\left(\dfrac{1}{4}\right)^2+cos^2x=1\)

\(\Rightarrow cos^2x=\dfrac{15}{16}\Rightarrow cosx=\dfrac{\sqrt{15}}{4}\)

2.

\(tanx=\dfrac{1}{3}\Rightarrow tan^2x=\dfrac{1}{9}\Rightarrow\dfrac{sin^2x}{cos^2x}=\dfrac{1}{9}\)

\(\Rightarrow\dfrac{sin^2x}{1-sin^2x}=\dfrac{1}{9}\Rightarrow9sin^2x=1-sin^2x\)

\(\Rightarrow sin^2x=\dfrac{1}{10}\Rightarrow sinx=\dfrac{\sqrt{10}}{10}\)

23 tháng 7 2017

Ta có \(\tan x=\frac{1}{2}\Rightarrow\frac{\sin x}{\cos x}=\frac{1}{2}\Rightarrow\cos x=2\sin x\)

Từ đó \(\frac{\cos x+\sin x}{\cos x-\sin x}=\frac{2\sin x+\sin x}{2\sin x-\sin x}=\frac{3\sin x}{\sin x}=3\)

Vậy \(\frac{\cos x+\sin x}{\cos x-\sin x}=3\)

5 tháng 10 2021

$\sin x=0,6\\\Leftrightarrow \sin^2 x=0,36\\\Rightarrow \cos^2 x=0,64\\\Leftrightarrow \cos x=0,8(x>0)$

5 tháng 10 2021

Cảm ơn ạ 

10 tháng 8 2019

\(\tan x=\frac{\sin x}{\cos x}=\frac{3}{5}\Rightarrow\sin x=\frac{3}{5}\cos x\)

\(\Rightarrow N=\frac{\sin x.\cos x}{\sin^2x-\cos^2x}=\frac{\sin x.\cos x}{\left(\sin x-\cos x\right)\left(\sin x+\cos x\right)}\)

\(=\frac{\frac{3}{5}.\cos^2x}{\left(\frac{3}{5}\cos x-\cos x\right)\left(\frac{3}{5}\cos x+\cos x\right)}=\frac{\frac{3}{5}\cos^2x}{\frac{-16}{25}.\cos^2x}=\frac{-15}{16}\)

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Lời giải:
$\tan x +\cot x=2$. Mà $\tan x\cot x =1$

$\Rightarrow \tan x = \cot x =1$

$\Rightarrow x=45^0$

$\Rightarrow A=\sin x\cos x =\sin 45^0.\cos 45^0=\frac{1}{2}$

$B=\sin x+\cos x= \sin 45^0+\cos 45^0=\sqrt{2}$

31 tháng 7 2015

a) sin = đối / huyền => sinx < 1 => sinx - 1 < 0

b) cos = kề / huyền => cosx < 1 => 1 - cosx > 0

c) sinx - cosx = sinx - sin(90-x)

Nếu x > 90-x hay x > 45 thì sinx - sin(90-x) > 0 hay sinx - cosx > 0

Nếu x < 90-x hay x < 45 thì sinx - sin(90-x) < 0 hay sinx - cosx < 0

d) Tương tự câu c)

 

17 tháng 8 2019

Ta có: *nếu x = 45 °  thì sinx = cosx, suy ra: sinx – cosx = 0

*nếu x <  45 °  thì cosx = sin( 90 °  – x)

Vì x <  45 ° nên  90 °  – x >  45 ° , suy ra: sinx < sin( 90 °  – x)

Vậy sinx – cosx < 0

*nếu x >  45 °  thì cosx = sin( 90 °  – x)

Vì x >  45 °  nên  90 °  – x <  45 ° , suy ra: sinx > sin( 90 °  – x)

Vậy sinx – cosx > 0.

18 tháng 5 2019

a) Dùng bảng lượng giác sinx = 0,2368 => x ≈ 13o42'

- Cách nhấn máy tính:

Để học tốt Toán 9 | Giải bài tập Toán 9

b) x ≈ 51o31'

- Cách nhấn máy tính:

Để học tốt Toán 9 | Giải bài tập Toán 9

c) x ≈ 65o6'

- Cách nhấn máy tính:

Để học tốt Toán 9 | Giải bài tập Toán 9

d) x ≈ 17o6'

- Cách nhấn máy tính:

Để học tốt Toán 9 | Giải bài tập Toán 9