a) Chứng tỏ rằng trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
b) Cho A = ( 17n + 1 ) ( 17n + 2 ) \(⋮\) 3 Với mọi n ϵ N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi 3 số tự nhiên liên tiếp là
- Nếu ( thỏa mãn ). Nếu thì
- Nếu thì
Vậy trong 3 số tự nhiên liên tiêp có 1 số chia hết cho 3.
b) Nhận thấy là 3 số tự nhiên liên tiếp. Mà không chia hết cho 3, nên trong 2 số còn lại 1 số phải
Do vậy:
a, gọi 3 số tự nhiên liên tiếp là a;a+1;a+2 (a thuộc N)
+ xét a chia hết cho 3 (đpcm)
+ xét a chia 3 dư 1 => a = 3k + 1
=> a + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) chia hết cho 3
+ xét a chia 3 dư 2 => a = 3k + 2
=> a + 1 = 3k + 2 + 1 = 3k + 3 = 3(k + 1) chia hết cho 3
vậy trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
b, đề không rõ lắm
Ta có: \(17^n;17^n+1;17^n+2\) là 3 số nguyên liên tiếp nên luôn có 1 số chia hết cho 3
\(\Rightarrow17^n\left(17^n+1\right)\left(17^n+2\right)⋮3\)
\(\Rightarrow\left(17^n+1\right)\left(17^n+2\right)⋮3\left(17^n⋮̸3\right)\)
=> A \(⋮3\left(ĐPCM\right)\)
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
TH1: Nếu a chia hết cho 3 => Đề bài đúng
TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)
=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng
TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)
=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng
TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)
Bài 5:
Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3
Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2
Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4
Nhưng: 2 không chia hết cho 4
Nên: 4(b+1)+2 không chia hết cho 4
Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4
Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)
17n+n-(111..1-n)=18n-(111..11-n)
vì 111..11 và n đều có số dư bằng nhau nên
111..11-n chia hết cho 9=> 17n+111..11 chia hết cho 9
Gọi 3 stn liên tiếp là: a , a + 1 , a + 2 (a là stn)
Ta có : a + a + 1 + a + 2
= a(1 + 2 )
=a3
Suy ra đpcm
Gọi 3 STN liên tiếp là : a ; a+1 ; a+2
a có 3 dạng 3k ; 3k +1 l 3k + 2
Thay vào mà tính
a, Gói 5 số tự nhiên liên tiếp là a,á+1,a+2.a+3.a+4(a thuộc N)
+Nếu a chia hết cho 5 , bài toán giải xong
+ Nếu a chia 5 dư 1, đặt a=5b+1(b thuộc N ) ta có a+4=5b+1+4=(5b+5) chia hết cho 5
+ Nếu a chia 5 dư 2, đặt a=5c+2 (c thuộc N) ta có a+3=5c+2+3=(5c+5) chia hết cho 5
+ Nếu a chia 5 dư 3 , đặt a=5d+3(d thuộc N) ta có a+2=5đ +3+2=(5d+5) chia hết cho5
+ Nếu a chia 5 dư 3, đặt a= 5e +4 ( e thuốc N ) ta có a+1=5e+4+1=(5e+5) chia hết cho 5
Vậy trong 5 số tự nhiên liên tiếp, có một số chia hết cho 5
b, 19 m+19m+1,19m+2,19m+3,19m+4 là 5 số tự nhiên liên tiếp nên theo câu a có 1 số chia hết cho 5 ma 19m ko chia hết cho 5 với mọi m thuộc N
do đó : 19m+1,19m+2,19m+3,19m+4 có 1 số chia hết cho 5
=>(19m+1);(19m+2) (19m+3), (19m+4) chia hết cho 5
a) Gọi 3 số tự nhiên liên tiếp là \(x,x+1,x+2\left(x\in N\right)\)
- Nếu \(x=3k\) ( thỏa mãn ). Nếu \(x=3k+1\) thì \(x+2=3k+1+2=\left(3k+3\right)⋮3\)
- Nếu \(x=3k+2\) thì \(x+1=3k+1+2=\left(3k+3\right)⋮3\)
Vậy trong 3 số tự nhiên liên tiêp có 1 số chia hết cho 3.
b) Nhận thấy \(17^n,17^n+1,17^n+2\) là 3 số tự nhiên liên tiếp mà \(17^n\) không chia hết cho 3, nên trong 2 số còn lại 1 số phải \(⋮3\)
Do vậy: \(A=\left(17^n+1\right)\left(17^n+2\right)⋮3\)
Cám ơn bạn nha