Bài 2: Cho tam giác ABC vuông tại A (AB<AC). Gọi M là trung điểm BC. Gọi D, E lần lượt là hình chiếu của M trên AB, AC.
a) Chứng minh DE = AM.
b) Chứng minh tứ giác BDEM là hình bình hành.
c) Gọi O là giao điểm của BE và DM. Gọi I là trung điểm EC. Chứng minh tứ giac AOMI là hình thang cân.
d) Vẽ đường cao AH của tam giác ABC. Tính số đo góc DHE.
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
Do đó:ADME là hình chữ nhật
Suy ra: DE=AM
b: Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
M là trung điểm của bC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
E là trung điểm của AC
M là trung điểm của BC
DO đó: EM là đường trung bình
=>EM//AB và EM=AB/2
=>EM//BD và EM=BD
hay BDEM là hình bình hành
c: Ta có: BDEM là hình bình hành
mà O là giao điểm của hai đường chéo
nên O là trung điểm chung của BE và DM
Xét ΔEBC có
O là trung điểm của EB
I là trung điểm của CE
Do đó: OI là đường trung bình
=>OI=BC/2
mà AM=BC/2
nên OI=AM
Xét tứ giác AOMI có MO//AI
nên AOMI là hình thang
mà OI=AM
nên AOMI là hình thang cân