CMR: \(A=\frac{1}{3}+\frac{2}{3^2}+...+\frac{100}{3^{100}}< \frac{1}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-...-\frac{1}{64}=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-...-\frac{1}{2^6}=A\)
2A = 1 - \(\frac{1}{2}+\frac{1}{2^2}-...-\frac{1}{2^5}\)
2A + A = 1 - \(\frac{1}{2}+\frac{1}{2^2}-...-\frac{1}{2^5}+\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}-...-\frac{1}{2^6}\)
3A = \(1-\frac{1}{2^6}=\frac{2^6-1}{2^6}\)(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
hổng khó, marivan2016(mk bít nick thiệt nhưng hổng nói) làm ơn k giùm mk nha cảm ơn nhìu!!!
\(3C=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+....+\frac{100}{3^{99}}.\)
\(2C=3C-C=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{99}}-\frac{100}{3^{100}}.\)
\(2C=1+A-\frac{100}{3^{100}}\)
\(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}=\frac{1}{2}\left(1-\frac{1}{3^{99}}\right)< \frac{1}{2}\)
=>\(2C=1+A-\frac{100}{3^{100}}< 1+\frac{1}{2}=\frac{3}{2}\)
\(C< \frac{3}{4}.\)
CMR:
\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+.....+\frac{100}{3^{100}}< \frac{3}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
đặt \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+....+\frac{100}{3^{100}}\)
\(\Rightarrow3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)
\(\Rightarrow2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow6A=3+1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow4A=3-\frac{101}{3^{99}}+\frac{100}{3^{100}}=3-\frac{203}{3^{100}}\)
\(\Rightarrow A=\frac{3-\frac{203}{3^{100}}}{4}\)
\(\Rightarrow A=\frac{3}{4}-\frac{203}{\frac{3^{100}}{4}}\le\frac{3}{4}\left(ĐPCM\right)\)
\(D=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\)
\(\Rightarrow3D=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)
\(\Rightarrow2D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow6D=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow4D=3-\frac{101}{3^{99}}+\frac{100}{3^{100}}=3-\frac{203}{3^{100}}\)
\(\Rightarrow D=\frac{3-\frac{203}{3^{100}}}{4}=\frac{3}{4}-\frac{203}{3^{100}.4}< \frac{3}{4}\left(đpcm\right)\)
Vậy \(D< \frac{3}{4}\)
Nguồn: @Dekisugi Hidetoshi
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+....+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
\(3A=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
\(3A+A=4A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow4A< 1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\) (1)
Đặt \(B=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
\(3B=3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)
\(B+3B=4B=3-\frac{1}{3^{98}}< 3\)
\(\Rightarrow B< \frac{3}{4}\) (2)
Từ (2) và (2) => \(4A< B< \frac{3}{4}\Rightarrow A< \frac{3}{16}\) (đpcm)
\(A=\frac{7n-1}{4};B=\frac{5n+3}{12}\)
Tìm n để A,B đồng thời là các số nguyên tố