C/m chia hết
a,(n+3)^2-(n-1)^2 cthia hết cho 8 ( với n thuộc N )
b,(2n+1)^2-1 chia hết cho 8 ( với n thuộc N )
c,chứng minh hiệu các bình phương của hai số lẻ liên tiếp thì chia hết cho 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (5n - 2)2 - (2n - 5)2
= (5n - 2 - 2n + 5) (5n - 2 + 2n - 5)
= (3n + 3) (7n - 7)
= 21n2 - 21n + 21n - 21
= 21n2 - 21 \(⋮\) 21
Vậy: 21n2 - 21 \(⋮\) 21 vs n \(\in\) Z
b) Gọi 2 số lẻ liên tiếp là 2x + 1 ; 2x + 3
Hiệu bình phương của 2 số lẻ liên tiếp là:
(2x + 1)2 - (2x + 3)2
= (2x + 1 - 2x - 3) (2x + 1 +2x + 3)
= -2.(4x + 4)
= -2.4(x + 1)
= -8(x + 1) \(⋮\) 8
Vậy: hiệu bình phương của 2 số lẻ liên tiếp \(⋮\) 8
Câu 2
Gọi tổng bình phương hai số lẻ là (2K+1)^2+(2H+1)^2
Ta có: (2K+1)^2+(2H+1)^2=4K^2+4K+1+4H^2+4H+1
=4(K^2+K+H^2+H)+2
Vì 4(K^2+K+H^2+H) chia hết cho 4
=>4(K^2+K+H^2+H)+2 ko chia hết cho 4
Mk biết làm vậy thôi nha
\(A=3^9-8=\left(3^3\right)^3-2^3=27^3-2^3=\left(27-2\right)\left(27^2+27\times2+2^2\right)=25\times\left(27^2+27\times2+2^2\right)\)
Vậy A chia hết cho 25 (đpcm)
***
\(B=\left(n+2\right)^2-\left(n-2\right)^2=\left(n+2+n-2\right)\left(n+2-n+2\right)=2n\times4=8n\)
Vậy B chia hết cho 8 (đpcm)
***
\(C=\left(n+7\right)^2-\left(n-5\right)^2=\left(n+7+n-5\right)\left(n+7-n+5\right)=\left(2n+2\right)\times12=12\times2\times\left(n+1\right)=24\times\left(n+1\right)\)
Vậy C chia hết cho 24 (đpcm)
***
Gọi 2 số lẻ liên tiếp là 2k + 1 và 2k + 3
\(D=\left(2k+1\right)^2-\left(2k+3\right)^2=\left(2k+1+2k+3\right)\left(2k+1-2k-3\right)=\left(4k+4\right)\times\left(-2\right)=\left(-2\right)\times4\times\left(k+1\right)=-8\times\left(k+1\right)\)Vậy D chia hết cho 8 (dpcm)
Đặt n = 2k , ta có ( đk k >= 1 do n là một số chẵn lớn hơn 4)
\(\left(2k\right)^4-4\times\left(2k\right)^3-4\times\left(2k\right)^2+16\times2k\)
\(=16k^4-32k^3-16k^2+32k\)
\(=16k^2\left(k^2-1\right)-32k\left(k^2-1\right)\)
\(=16k\times k\left(k-1\right)\left(k+1\right)-32\times k\left(k-1\right)\left(k+1\right)\)
Nhận xét \(\left(k-1\right)k\left(k+1\right)\) là 3 số tự nhiên liên tiếp nên
\(\left(k-1\right)k\left(k+1\right)\) chia hết cho 3
Suy ra điều cần chứng minh
câu 1:
a, giả sử 2 số chẵn liên tiếp là 2k và (2k+2) ta có:
2k(2k+2) = 4k2+4k = 4k(k+1) chia hết cho 8 vì 4k chia hết cho 4, k(k+1) chia hết cho 2
b, giả sử 3 số nguyên liên tiếp là a,a+1,a+2 với mọi a thuộc Z
mặt khác vì là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3.
vậy tích của 3 số nguyên liên tiếp chia hết cho 6.
c, giả sử 5 số nguyên liên tiếp là a,a+1,a+2, a+3,a+4 với mọi a thuộc Z
vậy tích của 5 số nguyên liên tiếp chia hết cho 120.
câu 2:
a, a3 + 11a = a[(a2 - 1)+12] = (a - 1)a(a+1) + 12a
vậy a3 + 11a chia hết cho 6.
b, ta có a3 - a = a(a2 - 1) = (a-1)a(a+1) chia hết cho 3 (1)
mn(m2-n2) = m3n - mn3 = m3n - mn + mn - mn3 = n( m3 - m) - m(n3 -n)
theo (1) mn(m2-n2) chia hết cho 3.
c, ta có: a(a+1)(2a+10 = a(a+1)(a -1+ a +2) = [a(a+1)(a - 1) + a(a+1)(a+2)] chia hết cho 6.( théo ý b bài 1)
a ) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)
\(=\left(2n+2\right).4\)
\(=8\left(n+1\right)\) chia hết cho 8
\(\Rightarrow\left(n+3\right)^2-\left(n-1\right)^2⋮8\)
b ) \(\left(2n+1\right)^2-1\)
\(=\left(2n+1-1\right)\left(2n+1+1\right)\)
\(=2n.\left(2n+2\right)\)
\(=2.2n\left(n+1\right)\)
\(=4n\left(n+1\right)\)
Ta có : \(n\left(n+1\right)\) là tích của hai số tự nhiên liên tiếp nên \(n\left(n+1\right)⋮2\)
\(\Rightarrow4n\left(n+1\right)⋮8\).
c ) Gọi 2 số lẻ liên tiếp là \(2n+1\) và \(2n-1\)
Ta có : \(\left(2n+1\right)^2-\left(2n-1\right)^2\)
\(=\left(2n+1+2n-1\right)\left(2n+1-2n+1\right)\)
\(=4n.2\)
\(=8n\) chia hết cho 8
Vậy .........