Cho ΔABC (AB<AC). Lấy D thuộc AB, E thuộc AC sao cho BD=CE. Đường thẳng MN cắt AB, AC tại I, K. Chứng minh ΔAIK cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AC-BC<AB<AC+BC
=>5<AB<8
mà AB>6
nên AB=7cm
b: AB-AC<BC<AB+AC
=>2<BC<14
mà BC<4
nên BC=3cm
Xét \(\Delta\)ADB có DM là trung tuyến đồng thời là đường cao
=> \(\Delta\)ADB cân tại D
=> \(\widehat{BAD}=\widehat{ABD}\)hay \(\widehat{BAE}=\widehat{ABC}\)
Xét \(\Delta ABC\)và \(\Delta BAE\)có:
AB chung
\(\widehat{ABC}=\widehat{BAE}\left(cmt\right)\)
BC=AE
=> \(\Delta ABC=\Delta BAE\left(cgc\right)\)
a) Xét ΔABC vuông tại A và ΔHCA vuông tại H có
\(\widehat{C}\) chung
Do đó: ΔABC\(\sim\)ΔHCA(g-g)
b) Ta có: ΔABC\(\sim\)ΔHCA(cmt)
nên \(\dfrac{AB}{HC}=\dfrac{AC}{AH}=\dfrac{BC}{CA}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{HC}{AH}=1\)
\(\Leftrightarrow HC=AH=2\left(cm\right)\)
Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(ΔABC vuông cân tại A)
AH chung
Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)
Suy ra: HB=HC(hai cạnh tương ứng)
mà HC=2cm(cmt)
nên HB=2cm
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AB^2=8\)
hay \(AB=2\sqrt{2}\left(cm\right)\)
a: Xét ΔABC vuông tại A và ΔADC vuông tại A có
AB=AD
AC chung
Do đó: ΔABC=ΔADC
b: Xét tứ giác BCDE có
A là trung điểm của BD
A là trung điểm của CE
Do đó: BCDE là hình bình hành
Suy ra: BC//DE
Gọi O là tâm đường tròn ngoại tiếp ΔABC
Gọi H là giao của AO với BC
AB=AC
OB=OC
Do đó: AO là trung trực của BC
=>AH là trung trực của BC
=>H là trung điểm của BC
HB=HC=4/2=2cm
Kẻ giao của AO với (O) là D
=>AD là đường kính của (O)
Xét (O) có
ΔABD nội tiếp
ADlà đường kính
Do đó: ΔBAD vuông tại B
ΔAHB vuông tại H
=>AH^2+HB^2=AB^2
=>\(AH^2=6^2-2^2=32\)
=>\(AH=4\sqrt{2}\left(cm\right)\)
Xét ΔBAD vuông tại B có BH là đường cao
nên AB^2=AH*AD
=>\(AD=\dfrac{6^2}{4\sqrt{2}}=\dfrac{9}{\sqrt{2}}\left(cm\right)\)
=>\(R=\dfrac{AD}{2}=\dfrac{9}{2\sqrt{2}}\left(cm\right)\)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
b: ta có: ΔABC\(\sim\)ΔHBA
nên BA/BH=BC/BA
hay \(BA^2=BH\cdot BC\)
a.Xét tam giác ABC và tam giác HBA, có:
^B: chung
^BAC = ^BHA = 90 độ
Vậy tam giác ABC đồng dạng tam giác HBA (g.g)
b.\(\rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\)
\(\Leftrightarrow AB^2=BH.BC\left(đfcm\right)\) (1)
c.Áp dụng định lý pitago \(\Rightarrow BC=\sqrt{6^2+10^2}=2\sqrt{34}\left(cm\right)\)
(1) \(\Leftrightarrow6^2=2\sqrt{34}BH\)
\(\Leftrightarrow BH=\dfrac{9\sqrt{34}}{17}\left(cm\right)\)
Áp dụng định lý pitago trong tam giác ABH \(\Rightarrow AH=\sqrt{6^2-\left(\dfrac{9\sqrt{34}}{17}\right)^2}=\dfrac{15\sqrt{34}}{17}\left(cm\right)\)