(9x-63).(27-3x)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ne\pm3\)
\(P=\left[\dfrac{x\left(x+3\right)}{x^2\left(x+3\right)+9\left(x+3\right)}+\dfrac{3}{x^2+9}\right]:\left[\dfrac{1}{x-3}-\dfrac{6x}{x^2\left(x-3\right)+9\left(x-3\right)}\right]\)
\(=\left[\dfrac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\dfrac{3}{x^2+9}\right]:\left[\dfrac{1}{x-3}-\dfrac{6x}{\left(x-3\right)\left(x^2+9\right)}\right]\)
\(=\dfrac{x+3}{x^2+9}:\dfrac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}=\dfrac{x+3}{x^2+9}.\dfrac{\left(x-3\right)\left(x^2+9\right)}{\left(x-3\right)^2}=\dfrac{x+3}{x-3}\)
Ý 2 mình k hiểu ý bạn lắm
\(P=\dfrac{x+3}{x-3}=\dfrac{x-3+6}{x-3}=1+\dfrac{6}{x-3}\in Z\)
\(\Leftrightarrow\left(x-3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Kết hợp vs ĐKXĐ \(\Rightarrow x\in\left\{0;1;2;4;5;6;9\right\}\)
\(\left(\frac{x^2+3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)
\(=\left(\frac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)
\(=\left(\frac{x}{x^2+9}+\frac{3}{x^2+9}\right):\left(\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\right)=\frac{x+3}{x^2+9}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)
\(=\frac{\left(x+3\right)\left(x-3\right)\left(x^2+9\right)}{\left(x^2+9\right)\left(x^2-6x+9\right)}=\frac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x-3\right)}=\frac{x+3}{x-3}\)
b) \(Voix>0\Rightarrow P\ne\varnothing\)(mk ko chac)
c) \(P\inℤ\Leftrightarrow x+3⋮x-3\Leftrightarrow x-3\in\left\{-1;-2;-3;-6;1;2;3;6\right\}\)
sau do tinh
cau nay la toan lp 8 nha
\(\dfrac{1}{3}x+y+1=0\)
=>\(\dfrac{1}{3}x+y=-1\)
\(M=x^3+9x^2y+27xy^2+27y^3+27\)
\(=\left(x^3+9x^2y+27xy^2+27y^3\right)+27\)
\(=\left(x+3y\right)^3+27\)
\(=\left[3\left(x+\dfrac{1}{3}y\right)\right]^3+27\)
\(=27\left(x+\dfrac{1}{3}y\right)^3+27\)
\(=27\left(-1\right)^3+27=0\)
\(\left(\frac{x^2+3x}{x^3+3x^2+9x+27}\right)\): \(\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)
=\(\left[\frac{x\left(x+3\right)}{x^2\left(x+3\right)+9\left(x+3\right)}\right]\):\(\left[\frac{1}{x-3}-\frac{6x}{x^2\left(x-3\right)+9\left(x-3\right)}\right]\)
=\(\left[\frac{x\left(x-3\right)}{\left(x^2+9\right)\left(x-3\right)}\right]\):\(\left[\frac{1}{x-3}-\frac{6x}{\left(x^2+9\right)\left(x-3\right)}\right]\)
=\(\frac{x}{x^2+9}\):\(\left[\frac{x^2+9}{\left(x-3\right)\left(x^2+9\right)}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right]\)
=\(\frac{x}{x^2+9}\):\(\frac{\left(x-3\right)^2}{\left(x-3\right)\left(x^2+9\right)}\)
=\(\frac{x}{x^2+9}\):\(\frac{x-3}{x^2+9}\)
=\(\frac{x}{x^2+9}\).\(\frac{x^2+9}{x-3}\)
=\(\frac{x}{x-3}\)
x= {7;9} **** mk nha
(9x-63).(27-3x)=0(x> hoặc =7)
=> 9x-63=0 hoặc 27-3x=0
tính lần lượt ra loại 2-x vì x> hoặc =7 =>x=7