K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 2 2017

Lời giải:

Dễ thấy \(\Delta>0\) nên theo định lý Viete phương trình luôn có hai nghiệm \(x_1,x_2\) thỏa mãn:

\(\left\{\begin{matrix} x_1+x_2=-p\\ x_1x_2=-228p\end{matrix}\right.\)

Từ đây suy ra hai nghiệm là hai nghiệm nguyên một âm một dương. Giả sử \(x_1 >0,x_2<0\), đặt \(x_1=a>0,-x_2=b>0\).

Ta có \(\left\{\begin{matrix} b-a=p\\ ab=228p\end{matrix}\right.\Rightarrow b(b-a)=bp\Leftrightarrow b^2=bp+228p\vdots p\rightarrow b\vdots p\)

\(\rightarrow bp+228p\vdots p^2\rightarrow b+228\vdots p\)

\(b\vdots p\Rightarrow 228\vdots p\Rightarrow p\in \left\{2,3,19\right\}\)

Thử lại thu được $p=19$ thỏa mãn.

8 tháng 10 2016

Ta có \(\Delta=p^2+912p=p\left(p+912\right)\)

Để phương trình có 2 nghiệm nguyên thì delta là số chính phương

vì p là số nguyên tố nên để \(\Delta=p^2+912p=p\left(p+912\right)\) là số cp thì p+912 chia hết p do đó 912 chia hết p

vì \(912=2^4.3.19\) nên p thuộc 2,3,19

thư các trường hợp p=2 del ta không là số cp loại

p=3 loại

p=19 phương trình có 2 nghiệm nguyên là 76,-57

vậy p=19 thỏa mãn(TTT số 116)

5 tháng 11 2017

a) 9x2 - 36

=(3x)2-62

=(3x-6)(3x+6)

=4(x-3)(x+3)

b) 2x3y-4x2y2+2xy3

=2xy(x2-2xy+y2)

=2xy(x-y)2

c) ab - b2-a+b

=ab-a-b2+b

=(ab-a)-(b2-b)

=a(b-1)-b(b-1)

=(b-1)(a-b)

P/s đùng để ý đến câu trả lời của mình

21 tháng 2 2020

a, mx - 2x + 3 = 0

m = -4

<=> -4x - 2x + 3 = 0

<=> -6x = -3

<=> x = 1/2

b, mx - 2x + 3 = 0 

x = 2

<=> 2m - 2.2 + 3 =0

<=> 2m - 1 = 0

<=>  m = 1/2

11 tháng 9 2020

Xét \(\Delta=p^2+4ap\inℕ^∗,\forall a,p\inℕ^∗\)

Để phương trình nhận nghiệm hữu tỉ thì \(\sqrt{\Delta}\)Phải là hữu tỉ hay có thể khẳng định rằng \(\Delta\)phải là số chính phương.

Ở đây ta chú ý rằng nếu x là số nguyên tố thì mọi số chính phương chia hết cho x buộc phải chia hết cho x2

( Điều này hiển nhiên khỏi chứng minh)

Vì \(\Delta⋮p\)mà p là số nguyên tố \(\Rightarrow\Delta=p^2+4ap⋮p^2\Rightarrow4a⋮p\)

---> Đặt \(4a=kp,k\inℕ^∗\)---> Thế vào \(\Delta\)

\(\Rightarrow\Delta=p^2+kp^2=p^2\left(1+k\right)\)là số chính phương khi và chỉ khi (1+k) là số chính phương

---> Đặt \(1+k=n^2\Rightarrow k=n^2-1,n\inℕ^∗\)---> Thế vào a

\(\Rightarrow a=\frac{\left(n^2-1\right)p}{4}\)

Thử lại: \(\Delta=p^2+4ap=p^2+\left(n^2-1\right)p^2=p^2.n^2=\left(pn\right)^2\)---> Là số chính phương

Kết luận: bla bla bla bla...... :)))

NV
2 tháng 12 2021

\(\left\{{}\begin{matrix}9-8m>0\\9-5m>0\end{matrix}\right.\) \(\Rightarrow m< \dfrac{9}{8}\)

Gọi a là nghiệm chung của 2 pt

\(\Rightarrow\left\{{}\begin{matrix}a^2+3a+2m=0\\a^2+6a+5m=0\end{matrix}\right.\)

\(\Rightarrow3a+3m=0\Rightarrow a=-m\)

Thay vào 2 pt ban đầu:

\(\Rightarrow\left\{{}\begin{matrix}m^2-3m+2m=0\\m^2-6m+5m=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)

Đề sai rồi bạn

28 tháng 4 2021

đúng nha, em mới thi hồi chiều

Δ=(m+2)^2-4(m^2-1)

=m^2+4m+4-4m^2+4

=-3m^2+4m+8

Để phương trình có hai nghiệm thì -3m^2+4m+8>=0

=>\(\dfrac{2-2\sqrt{7}}{3}< =m< =\dfrac{2+2\sqrt{7}}{3}\)

x1-x2=2

=>(x1-x2)^2=4

=>(x1+x2)^2-4x1x2=4

=>(m+2)^2-4(m^2-1)=4

=>-3m^2+4m+8=4

=>-3m^2+4m+4=0

=>m=2 hoặc m=-2/3

16 tháng 5 2021

1) điều kiện của m: m khác 5/2

thế x=2 vào pt1 ta đc:

(2m-5)*4 - 4(m-1)+3=0 <=> 8m-20-4m+4+3=0<=> 4m = 13 <=> m=13/4 (nhận)

lập △'=[-(m-1)]2-*(2m-5)*3 = (m-4)2

vì (m-4)2 ≥ 0 nên phương trình có nghiệm kép => x1= x2 =2

3) vì △'≥0 với mọi m nên phương trình đã cho có nghiệm với mọi m