Cho số tự nhiên n thỏa mãn:\(\left(\frac{1}{2}\right)^n\) =\(\left(\frac{1}{8}\right)^5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1\frac{1}{4}-\frac{3}{5}\right):\frac{17}{20}< \frac{x}{17}< \left(5\frac{1}{3}-3\frac{1}{2}\right).\frac{12}{17}\)
= \(\left(\frac{5-3}{4}\right):\frac{17}{20}< \frac{x}{17}< \left(\frac{16}{3}-\frac{7}{2}\right).\frac{12}{17}\)
= \(\frac{1}{2}:\frac{17}{20}< \frac{x}{17}< \left(\frac{32-21}{6}\right).\frac{12}{17}\)
= \(\frac{10}{17}< \frac{x}{17}< \frac{3}{2}.\frac{12}{17}\)
= \(\frac{10}{17}< \frac{x}{17}< \frac{18}{17}\)
( Mik thấy mẫu giống nhau mik sẽ bỏ mẫu đi mik sẽ tìm tử )
=> 10 < 11 ; 12 ; 13 ; 14 ; 15 ; 16 ; 17 < 18
=> x = { 11 ; 12 ; 13 ; 14 ; 15 ; 16 ; 17 }
k mik nha làm ơn đó
\(\left(\frac{5}{3}+\frac{3}{4}\right):\left(\frac{7}{2}-\frac{9}{4}\right)< A< 3\frac{1}{2}-\frac{1}{2}\)
\(3\frac{1}{2}-\frac{1}{2}=3\)
A=2
vì bài dài quá nên mình làm từng bài 1 nhé
1. Ta thấy : \(\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)
Do đó :
\(B< \frac{1}{2}.\left[\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]< \frac{1}{2}.\frac{1}{6}=\frac{1}{12}\)
2.
Nhận xét : \(1+\frac{1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)
Do đó :
\(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2.3...\left(n+1\right)}{1.2...n}.\frac{2.3...\left(n+1\right)}{3.4...\left(n+2\right)}=\frac{n+1}{1}.\frac{2}{n+2}< 2\)
\(\left(\frac{1}{2}\right)^n=\left(\frac{1}{8}\right)^5\)
\(\left(\frac{1}{2}\right)^n=\left(\frac{1^3}{2^3}\right)^5\)
\(\left(\frac{1}{2}\right)^n=\left[\left(\frac{1}{2}\right)^3\right]^5\)
\(\left(\frac{1}{2}\right)^n=\left(\frac{1}{2}\right)^{15}\)
n = 15
\(\left(\frac{1}{2}\right)^n=\left(\frac{1}{8}\right)^5\)
\(\Rightarrow\left(\frac{1}{2}\right)^n=\left(\frac{1}{2}\right)^{3.5}\)
\(\Rightarrow\left(\frac{1}{2}\right)^n=\left(\frac{1}{2}\right)^{15}\)
\(\Rightarrow n=15\)
Vậy n = 15