K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

a) ko bt làm

17 tháng 7 2021

undefined

b) Ta có: \(x^2y+xy+x+1\)

\(=xy\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)\left(xy+1\right)\)

c) Ta có:  \(ax+by+ay+bx\)

\(=a\left(x+y\right)+b\left(x+y\right)\)

\(=\left(x+y\right)\left(a+b\right)\)

 

13 tháng 8 2021

a) x2y+xy+x+1= (x2y+xy)+(x+1)=xy(x+10+(x+1)=(x+1)(xy+1)

b) x2-(a+b)x+ab=x2-ax-bx+ab=(x2-ax)-(bx-ab)=x(x-a)-b(x-a)=(x-a)(x-b)

c) ax2+ay-bx2-by=(ax2+ay)-(bx2+by)=a(x2+y)-b(x2+y)=(a-b)(x2+y)

d) ax-2x-a2+2a=(ax-2x)-(a2-2a)=x(a-2)-a(a-2)=(a-2)(x-a)

e) 2x2+4ax+x+2a=(2x2+4ax)+(x+2a)=2x(x+2a)+(x+2a)=(x+2a)(2x+1)

f) x3+ax2+x+a=(x3+ax2)+(x+a)=x2(x+a)+(x+a)=(x2+1)(x+a)

13 tháng 8 2021

còn 1 câu g nx bạn

10 tháng 10 2021

a) \(=x^3\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^3-1\right)\)

\(=\left(x-1\right)^2\left(x^2+x+1\right)\)

b) \(=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)

c) Đổi đề: \(a^2x+a^2y-7x-7y\)

\(=a^2\left(x+y\right)-7\left(x+y\right)=\left(x+y\right)\left(a^2-7\right)\)

d) \(=x^2\left(a-b\right)+y\left(a-b\right)=\left(a-b\right)\left(x^2+y\right)\)

e) \(=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)\)

\(=\left(x+1\right)^2\left(x^2-x+1\right)\)

g) \(=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\)

h) \(=\left(x-y\right)\left(x+y\right)+\left(x+y\right)=\left(x+y\right)\left(x-y+1\right)\)

i) \(=\left(x+1\right)^2-4=\left(x+1-2\right)\left(x+1+2\right)=\left(x-1\right)\left(x+3\right)\)

10 tháng 10 2021

a\(x^3\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^3-1\right)\)

b)\(=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)

d)\(=a\left(x^2+y\right)-b\left(x^2+y\right)=\left(x^2+y\right)\left(x-b\right)\)

e)\(=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)\)

g)\(=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\)

h)\(=\left(x-y\right)\left(x+y\right)-\left(x-y\right)=\left(x-y\right)\left(x+y-1\right)\)

i)\(=\left(x-1\right)^2-4=\left(x-1-2\right)\left(x-1+2\right)=\left(x-3\right)\left(x+1\right)\)

26 tháng 10 2021

a: \(=x\left(x-3\right)-4y\left(x-3\right)\)

=(x-3)(x-4y)

d: \(=\left(x-2\right)\left(x+2\right)+\left(x+2\right)^2\)

\(=\left(x+2\right)\left(x-2+x+2\right)\)

=2x(x+2)

26 tháng 10 2021

\(a,=x\left(x-3\right)-4y\left(x-3\right)=\left(x-4y\right)\left(x-3\right)\\ b,=\left(x-1\right)\left(x^2+x+1\right)-4x\left(x-1\right)=\left(x-1\right)\left(x^2-3x+1\right)\\ c,=\left(x-y\right)\left(1-a\right)\\ d,=\left(x-2\right)\left(x-2+x+2\right)=2x\left(x-2\right)\\ e,=x^2\left(x+y\right)-xz\left(x+y\right)=x\left(x-z\right)\left(x+y\right)\\ f,=\left(x-y-2\right)\left(x+y\right)\)

a) \(2x-72x^3=2x\left(1-36x^2\right)=2x\left(1-6x\right)\left(1+6x\right)\)

f) \(4x^4+1=4x^4+4x^2+1-4x^2=\left(2x^2+1\right)^2-\left(2x\right)^2=\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)\)

14 tháng 9 2023

3) \(x^2\left(x+2y\right)-x-2y\)

\(=x^2\left(x+2y\right)-\left(x+2y\right)\)

\(=\left(x^2-1\right)\left(x+2y\right)\)

\(=\left(x+1\right)\left(x-1\right)\left(x+2y\right)\)

4) \(x^3-4x^2-9x+36\)

\(=\left(x^3-4x^2\right)-\left(9x-36\right)\)

\(=x^2\cdot\left(x-4\right)-9\left(x-4\right)\)

\(=\left(x-4\right)\left(x^2-9\right)\)

\(=\left(x-4\right)\left(x+3\right)\left(x-3\right)\)

 

 

15 tháng 9 2023

\(x^2\left(x+2y\right)-x-2y\\ =x^2\left(x+2y\right)-\left(x+2y\right)\\ =\left(x^2-1\right)\left(x+2y\right)\\ =\left(x-1\right)\left(x+1\right)\left(x+2y\right)\\ ---\\ x^3-4x^2-9x+36\\ =x^2\left(x-4\right)-9\left(x-4\right)\\ =\left(x^2-9\right)\left(x-4\right)\\ =\left(x-3\right)\left(x+3\right)\left(x-4\right)\)

25 tháng 10 2021

\(a,=5\left(x-y\right)+a\left(x-y\right)=\left(5+a\right)\left(x-y\right)\\ b,=a\left(x+y\right)+b\left(x+y\right)=\left(a+b\right)\left(x+y\right)\\ c,=x\left(x+1\right)+a\left(x+1\right)=\left(x+a\right)\left(x+1\right)\\ d,Sửa:x^2y+xy^2-3x-3y=xy\left(x+y\right)-3\left(x+y\right)=\left(xy-3\right)\left(x+y\right)\\ e,=xy\left(x+1\right)-\left(x+1\right)=\left(xy-1\right)\left(x+1\right)\\ f,=x^2-4=\left(x-2\right)\left(x+2\right)\\ g,=\left(x+3\right)^2-y^2=\left(x-y+3\right)\left(x+y+3\right)\\ h,=\left(x+5\right)^2-y^2=\left(x-y+5\right)\left(x+y+5\right)\\ i,=\left(x-4\right)^2-24y^2=\left(x-2\sqrt{6}y-4\right)\left(x+2\sqrt{6}y+4\right)\)