trên mặt phẳng toạ độ Oxy , hãy vẽ hình thang ABCD , biết toạ độ các đỉnh là :
A(1;0) , B(1;4) , C(5;4) , D(7;0) . Gọi trung điểm các cạnh AB,BC,CD,DA lần lượt là M,N,P,Q . Tìm toạ độ các điểm đó .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do D nằm trên trục hoành nên tọa độ có dạng \(D\left(x;0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{BC}=\left(2;-2\right)\\\overrightarrow{AD}=\left(x-5;-5\right)\end{matrix}\right.\)
Do BC, AD là 2 đáy hình thang \(\Rightarrow BC||AD\)
\(\Rightarrow\overrightarrow{AD}\) cùng phương \(\overrightarrow{BC}\)
\(\Rightarrow\dfrac{x-5}{2}=\dfrac{-5}{-2}\)
\(\Rightarrow x-5=5\Rightarrow x=10\)
\(\Rightarrow D\left(10;0\right)\)
Gọi \(D\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-3;-1\right)\\\overrightarrow{DC}=\left(5-x;1-y\right)\end{matrix}\right.\)
ABCD là hình bình hành \(\Rightarrow\overrightarrow{AB}=\overrightarrow{DC}\)
\(\Rightarrow\left\{{}\begin{matrix}5-x=-3\\1-y=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=8\\y=2\end{matrix}\right.\)
\(\Rightarrow D\left(8;2\right)\)
I là trọng tâm của ΔABC
=>\(\left\{{}\begin{matrix}x_A+x_B+x_C=3\cdot x_I\\y_A+y_B+y_C=3\cdot y_I\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3+\left(-1\right)+x_C=3\cdot1=3\\-1+2+y_C=3\cdot1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_C=3-2=1\\y_C=3-1=2\end{matrix}\right.\)
Vậy: C(1;2)
Ta có: A(3;-1); B(-1;2); C(1;2); D(x;y)
=>\(\overrightarrow{AB}=\left(-4;3\right);\overrightarrow{DC}=\left(1-x;2-y\right)\)
ABCD là hình bình hành
=>\(\overrightarrow{AB}=\overrightarrow{DC}\)
=>\(\left\{{}\begin{matrix}1-x=-4\\2-y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=-1\end{matrix}\right.\)
Vậy: D(5;-1)
Tâm O của hình bình hành ABCD sẽ là trung điểm của AC
A(3;-1); C(1;2); O(x;y)
=>\(\left\{{}\begin{matrix}x=\dfrac{3+1}{2}=\dfrac{4}{2}=2\\y=\dfrac{-1+2}{2}=\dfrac{1}{2}\end{matrix}\right.\)
Áp dụng công thức trọng tâm:
\(\left\{{}\begin{matrix}x_A+x_B+x_C=3x_I\\y_A+y_B+y_C=3y_I\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_C=3x_I-\left(x_A+x_B\right)=1\\y_C=3y_I-\left(y_A+y_B\right)=2\end{matrix}\right.\)
\(\Rightarrow C\left(1;2\right)\)
Đặt tọa độ D là \(D\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-4;3\right)\\\overrightarrow{DC}=\left(1-x;2-y\right)\end{matrix}\right.\)
ABCD là hình bình hành \(\Leftrightarrow\overrightarrow{AB}=\overrightarrow{DC}\)
\(\Rightarrow\left\{{}\begin{matrix}1-x=-4\\2-y=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=5\\y=-1\end{matrix}\right.\) \(\Rightarrow D\left(5;-1\right)\)
Tâm O hình bình hành là trung điểm đường chéo AC nên áp dụng công thức trung điểm:
\(\left\{{}\begin{matrix}x_O=\dfrac{x_A+x_C}{2}=2\\y_O=\dfrac{y_A+y_C}{2}=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow O\left(2;\dfrac{1}{2}\right)\)
\(M=\left(m;8m+4\right)\) là trung điểm AC.
\(\Rightarrow A=\left(2m+5;16m+14\right)\)
Mà \(A\in AH\Rightarrow2m+5+2\left(16m+14\right)+1=0\)
\(\Rightarrow m=-1\)
\(\Rightarrow A=\left(3;-2\right)\)
Đường thẳng BC đi qua \(C=\left(-5;-6\right)\) và vuông góc AH có phương trình:
\(2x-y+4=0\)
B có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}8x-y+4=0\\2x-y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=4\end{matrix}\right.\Rightarrow B=\left(0;4\right)\)
Gọi \(C\left( {a;b} \right),D\left( {m,n} \right) \Rightarrow \overrightarrow {IC} = \left( {a - 4,b - 2} \right)\) và \(\overrightarrow {ID} = \left( {m - 4,n - 2} \right)\)
Do I là tâm của hình bình hành ABCD nên I là trung điểm AC và BD.
Vậy ta có:\(\overrightarrow {AI} = \overrightarrow {IC} \)và \(\overrightarrow {BI} = \overrightarrow {ID} \)
Ta có: \(\overrightarrow {AI} = \left( {7;1} \right)\) và \(\overrightarrow {BI} = \left( {5; - 1} \right)\)
Do \(\overrightarrow {AI} = \overrightarrow {IC} \Leftrightarrow \left\{ \begin{array}{l}7 = a - 4\\1 = b - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 11\\b = 3\end{array} \right.\) .Vậy \(C\left( {11;3} \right)\)
Do \(\overrightarrow {BI} = \overrightarrow {ID} \Leftrightarrow \left\{ \begin{array}{l}5 = m - 4\\ - 1 = n - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 9\\n = 1\end{array} \right.\). Vậy \(D\left( {9;1} \right)\)
Tọa độ điểm M là:
\(\left\{{}\begin{matrix}x_M=\dfrac{1+1}{2}=1\\y_M=\dfrac{0+4}{2}=2\end{matrix}\right.\)
Tọa độ điểm N là:
\(\left\{{}\begin{matrix}x_N=\dfrac{1+5}{2}=3\\y_N=\dfrac{4+4}{2}=4\end{matrix}\right.\)
Tọa độ điểm P là:
\(\left\{{}\begin{matrix}x_P=\dfrac{5+7}{2}=6\\y_P=\dfrac{4+0}{2}=2\end{matrix}\right.\)
Tọa độ điểm Q là:
\(\left\{{}\begin{matrix}x_Q=\dfrac{7+1}{2}=4\\y_Q=\dfrac{0+0}{2}=0\end{matrix}\right.\)