với giá trị nào của q và p thì hàm số y=(p2-5p+5)x2+(p2+pq-6q2)x+3 là hàm số bậc nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để hàm số đã cho là hàm số bậc nhất thì:
3m + 5 ≠ 0
⇔ 3m ≠ -5
⇔ m ≠ -5/3
b) Để hàm số đã cho là hàm số bậc nhất thì:
2m² + 3 ≠ 0
⇔2m² ≠ -3 (luôn đúng)
Vậy m ∈ R
c) Để hàm số đã cho là hàm số bậc nhất thì:
m² - 3m = 0 và 3 - m ≠ 0
*) m² - 3m = 0
⇔ m(m - 3) = 0
⇔ m = 0 hoặc m - 3 = 0
**) m - 3 = 0
⇔ m = 3
*) 3 - m ≠ 0
⇔ m ≠ 3
Vậy m = 0 thì hàm số đã cho là hàm số bậc nhất
a: Để đây là hàm số bậc nhất thì 3m+5<>0
=>3m<>-5
=>\(m< >-\dfrac{5}{3}\)
b: Để đây là hàm số bậc nhất thì \(2m^2+3\ne0\)
mà \(2m^2+3>=3>0\forall m\)
nên \(m\in R\)
c: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m^2-3m=0\\3-m< >0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\left(m-3\right)=0\\m< >3\end{matrix}\right.\Leftrightarrow m=0\)
a) Hàm số y = (m – 1)x + 3 là hàm số bậc nhất đối với x khi m – 1 ≠ 0 hay m ≠ 1 (*)
Hàm số đồng biến khi m – 1 > 0 hay m > 1.
Kết hợp với điều kiện (*) ta được với m > 1 thì hàm số đồng biến.
b) Hàm số y = (5 – k)x + 1 là hàm số bậc nhất đối với x khi 5 – k ≠ 0 hay k ≠ 5 (**).
Hàm số nghịch biến khi 5 – k < 0 hay k > 5.
Kết hợp với điều kiện (**) ta được với k > 5 thì hàm số nghịch biến.
a) Hàm số y = (m – 1)x + 3 là hàm số bậc nhất đối với x khi m – 1 ≠ 0 hay m ≠ 1 (*)
Hàm số đồng biến khi m – 1 > 0 hay m > 1.
Kết hợp với điều kiện (*) ta được với m > 1 thì hàm số đồng biến.
b) Hàm số y = (5 – k)x + 1 là hàm số bậc nhất đối với x khi 5 – k ≠ 0 hay k ≠ 5 (**).
Hàm số nghịch biến khi 5 – k < 0 hay k < 5.
Kết hợp với điều kiện (**) ta được với k < 5 thì hàm số nghịch biến.
a, y= 5x - (2-x)k = 5x - 2k + k.x = (5+k)x - 2k
Vậy hàm số có hệ số a= 5+k. Khi đó:
+ Hàm số đồng biến a > 0 ⇔ 5 + k > 0 ⇔ k > -5
+ Hàm số nghịch biến a < 0 ⇔ 5 + k < 0 ⇔ k < -5.
a,khi m-1>=0 thi ham so dong bien tuc m>=1
b,khi 5-k<=0 thi ham so nghich bien tuc k>=5
a) Khi m - 1 \(\ge\)0 thì hàm số đồng biến tức m \(\ge\)1
b) Khi 5 - k \(\le\)0 thì hàm số nghịch biến tức k \(\ge\)5
a)
đường thẳng (d1) song song với đường thẳng (d2) khi :
a = a' và b khác b'
suy ra :
\(m-1=3\) \(\Leftrightarrow m=4\)
vậy đường thẳng (d1) song song với đường thẳng (d2) khi m = 4